Synlett 2010(13): 1919-1922  
DOI: 10.1055/s-0030-1258486
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enzymatic Oxidative Cyclisation Reactions Leading to Dibenzoazocanes

Francesco Tozzi, Steven V. Ley, Matthew O. Kitching, Ian R. Baxendale
Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
Fax: +44(1223)336442; e-Mail: theitc@ch.cam.ac.uk;
Further Information

Publication History

Received 5 April 2010
Publication Date:
09 July 2010 (online)

Abstract

From simple N-isovanillyltyramine derivatives double oxidative biotransformations can be achieved using tyrosinase leading to the corresponding hydroxylated dibenzoazocanes.

    References and Notes

  • 1a Stasiuk M. Kozubek A. Cell. Mol. Life Sci.  2010,  67:  841 
  • 1b Li L. Zhang Y. Shang H.-L. Xie J.-Q. Huaxue Gongcheng (Chem. Eng.)  2008,  36:  36 
  • 1c Kotali A. ARKIVOC  2009,  (i):  81 
  • 1d Dohi T. Kita Y. Chem. Commun.  2009,  2073 
  • 1e Maki-Arvela P. Holmbom B. Salmi T. Murzin DY. Catal. Rev. Sci. Eng.  2007,  49:  197 
  • 1f Itoh S. Fukuzumi S. Acc. Chem. Res.  2007,  40:  592 
  • 1g Shetty K. McCue P. Food Biotechnol.  2003,  17:  67 
  • 1h Moonen MJH. Fraaije MW. Rietjens IMCM. Laane C. van Berkel WJH. Adv. Synth. Catal.  2002,  344:  1023 
  • 1i Eickhoff H. Jung G. Rieker A. Tetrahedron  2001,  57:  353 
  • 2 For example, see: Oxidation, In Comprehensive Organic Synthesis   Vol. 7:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991. 
  • 3a Waldmann H. Drauz K. In Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook   Vols. 1 and 2:  Wiley-VCH; Weinheim: 1995. 
  • 3b Liese A. Wandrey C. Seelbach K. In Industrial Biotransformations: A Comprehensive Handbook   Wiley-VCH; Weinheim: 2000. 
  • 3c Vulfson EN. In Enzymes in Nonaqueous Solvents: Methods and Protocols (Methods in Biotechnology)   Humana Press; Totowa, NJ: 2001. 
  • 4a Hollinshead DM. Howell SC. Ley SV. Mahon M. Ratcliffe NM. Worthington PA. J. Chem. Soc., Perkin Trans. 1  1983,  1579 
  • 4b Ley SV. Sternfeld F. Taylor S. Tetrahedron Lett.  1987,  28:  225 
  • 4c Ley SV. Sternfeld F. Tetrahedron Lett.  1988,  29:  5305 
  • 4d Baxendale IR. Ernst M. Krahnert W.-R. Ley SV. Synlett  2002,  1641 
  • 4e Baxendale IR. Griffith-Jones CM. Ley SV. Tranmer GK. Synlett  2006,  427 
  • 5a Pandey G. Muralikrishna C. Bhalerao UT. Tetrahedron  1989,  45:  6867 
  • 5b Sugumaran M. Dali H. Kundzicz H. Semensi V. Bioorg. Chem.  1989,  17:  443 
  • 5c Bhalerao UT. Murali Krishna C. Pandey G. J. Chem. Soc., Chem. Commun.  1992,  1176 
  • 5d Land JE. Ramsden CA. Riley PA. Yoganathan G. Org. Biomol. Chem.  2003,  1:  3120 
  • 5e Gademann K. Bethuel Y. Locher HH. Hubschwerlen C. J. Org. Chem.  2007,  72:  8361 
  • 5f Leutbecher H. Hajdok S. Braunberger C. Neumann M. Mika S. Conrad J. Beifuss U. Green Chem.  2009,  11:  676 
  • For reviews and recent prospects, see:
  • 6a Burton SG. Catal. Today  1994,  22:  459 
  • 6b Solomon EI. Chen P. Metz M. Lee S. Palmer AE. Angew. Chem. Int. Ed.  2001,  40:  4570 
  • 6c Veitch NC. Phytochemistry  2004,  65:  249 
  • 7a Baxendale IR. Deeley J. Griffiths-Jones CM. Ley SV. Saaby S. Tranmer GK. Chem. Commun.  2006,  2566 
  • 7b Baxendale IR. Ley SV. Curr. Org. Chem.  2005,  9:  1521 
  • 7c Baxendale IR. Ley SV. Ind. Eng. Chem. Res.  2005,  44:  8588 
  • 7d Baxendale IR. Ley SV. Curr. Org. Chem.  2005,  9:  1521 
  • 7e Baxendale IR. Ley SV. Nesi M. Piutti C. Tetrahedron  2002,  58:  6285 
  • 7f Baxendale IR. Ley SV. Piutti C. Angew. Chem. Int. Ed.  2002,  41:  2194 
  • 7g Ley SV. Baxendale IR. Brusotti G. Caldarelli M. Massi A. Nesi M. Farmaco  2002,  57:  321 
  • 8 Szewczyk J. J. Heterocycl. Chem.  1988,  25:  1809 
  • 9 Jin Z. Nat. Prod. Rep.  2005,  22:  111 
  • 10 Schwartz MA. Holton RA. J. Am. Chem. Soc.  1970,  92:  1090 
  • 14 Appukkuttan P. Van der Eycken E. Eur. J. Org. Chem.  2008,  5867 
  • 15 In one of the rotamers H-6a and the H-6b are, respectively, located at δ = 4.80 and 2.99 ppm are in an AB system with a coupling constant of 13.5 Hz. The high shift of H-6a is due to its position in the plane of the carbonyl. In the minor rotamer they are in the same system with a coupling constant of 14.5 Hz but at δ = 4.40 and 3.40 ppm, respectively. Moreover, COSY experiment showed that the protons H-9a and H-8b, and the H-9b and H-8a do not, respectively, couple because of their ca. 90˚ dihedral angle, thus confirming the TBC conformation. See also: Landais Y. Robin J. Tetrahedron  1992,  48:  7185 
  • 16 Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. See: Cooksey CJ. Garratt PJ. Land EJ. Pavel S. Ramsden CA. Riley PA. Smit NPM. J. Biol. Chem.  1997,  272:  26226 
  • 18 Sànchez-Ferrer A. Rodriguez-López JN. Garcia-Cànovas F. Garcia-Carmona F. Biochim. Biophys. Acta  1995,  1247:  1 
11

Preparation data X-ray structure file reference: CCDC 770222. See Supporting Information for full experimental details and characterisation.

12

Alumina (neutral and basic) and Florisil were also used as well as several basic ion exchange resins with a catch and release procedure although these showed no benefits in terms of isolated yield or purities.

13

Preparation data X-ray structure file reference: CCDC 770223. See Supporting Information for full experimental details and characterisation.

17

Cresolase activity is the hydroxylation of phenols while catecholase is reserved for the oxidation of catechols.