Abstract
From simple N -isovanillyltyramine
derivatives double oxidative biotransformations can be achieved
using tyrosinase leading to the corresponding hydroxylated dibenzoazocanes.
Key words
enzymes - oxidation - biotransformation - heterocycles
References and Notes
1a
Stasiuk M.
Kozubek A.
Cell.
Mol. Life Sci.
2010,
67:
841
1b
Li L.
Zhang Y.
Shang H.-L.
Xie J.-Q.
Huaxue Gongcheng (Chem. Eng.)
2008,
36:
36
1c
Kotali A.
ARKIVOC
2009,
(i):
81
1d
Dohi T.
Kita Y.
Chem. Commun.
2009,
2073
1e
Maki-Arvela P.
Holmbom B.
Salmi T.
Murzin DY.
Catal. Rev. Sci. Eng.
2007,
49:
197
1f
Itoh S.
Fukuzumi S.
Acc. Chem. Res.
2007,
40:
592
1g
Shetty K.
McCue P.
Food Biotechnol.
2003,
17:
67
1h
Moonen MJH.
Fraaije MW.
Rietjens
IMCM.
Laane C.
van Berkel WJH.
Adv. Synth. Catal.
2002,
344:
1023
1i
Eickhoff H.
Jung G.
Rieker A.
Tetrahedron
2001,
57:
353
2 For example, see:
Oxidation, In Comprehensive
Organic Synthesis
Vol. 7:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
3a
Waldmann H.
Drauz K.
In Enzyme
Catalysis in Organic Synthesis: A Comprehensive Handbook
Vols.
1 and 2:
Wiley-VCH;
Weinheim:
1995.
3b
Liese A.
Wandrey C.
Seelbach K. In
Industrial Biotransformations: A Comprehensive
Handbook
Wiley-VCH;
Weinheim:
2000.
3c
Vulfson EN. In
Enzymes in Nonaqueous Solvents: Methods and
Protocols (Methods in Biotechnology )
Humana
Press;
Totowa, NJ:
2001.
4a
Hollinshead DM.
Howell SC.
Ley SV.
Mahon M.
Ratcliffe NM.
Worthington PA.
J. Chem. Soc., Perkin Trans. 1
1983,
1579
4b
Ley SV.
Sternfeld F.
Taylor S.
Tetrahedron
Lett.
1987,
28:
225
4c
Ley SV.
Sternfeld F.
Tetrahedron Lett.
1988,
29:
5305
4d
Baxendale IR.
Ernst M.
Krahnert W.-R.
Ley SV.
Synlett
2002,
1641
4e
Baxendale IR.
Griffith-Jones
CM.
Ley SV.
Tranmer GK.
Synlett
2006,
427
5a
Pandey G.
Muralikrishna C.
Bhalerao UT.
Tetrahedron
1989,
45:
6867
5b
Sugumaran M.
Dali H.
Kundzicz H.
Semensi V.
Bioorg. Chem.
1989,
17:
443
5c
Bhalerao UT.
Murali Krishna C.
Pandey G.
J. Chem. Soc., Chem. Commun.
1992,
1176
5d
Land JE.
Ramsden CA.
Riley PA.
Yoganathan G.
Org.
Biomol. Chem.
2003,
1:
3120
5e
Gademann K.
Bethuel Y.
Locher HH.
Hubschwerlen C.
J. Org. Chem.
2007,
72:
8361
5f
Leutbecher H.
Hajdok S.
Braunberger C.
Neumann M.
Mika S.
Conrad J.
Beifuss U.
Green Chem.
2009,
11:
676
For reviews and recent prospects,
see:
6a
Burton SG.
Catal. Today
1994,
22:
459
6b
Solomon EI.
Chen P.
Metz M.
Lee S.
Palmer AE.
Angew.
Chem. Int. Ed.
2001,
40:
4570
6c
Veitch NC.
Phytochemistry
2004,
65:
249
7a
Baxendale IR.
Deeley J.
Griffiths-Jones CM.
Ley SV.
Saaby S.
Tranmer GK.
Chem.
Commun.
2006,
2566
7b
Baxendale IR.
Ley SV.
Curr.
Org. Chem.
2005,
9:
1521
7c
Baxendale IR.
Ley SV.
Ind.
Eng. Chem. Res.
2005,
44:
8588
7d
Baxendale IR.
Ley SV.
Curr.
Org. Chem.
2005,
9:
1521
7e
Baxendale IR.
Ley SV.
Nesi M.
Piutti C.
Tetrahedron
2002,
58:
6285
7f
Baxendale IR.
Ley SV.
Piutti C.
Angew. Chem. Int. Ed.
2002,
41:
2194
7g
Ley SV.
Baxendale IR.
Brusotti G.
Caldarelli M.
Massi A.
Nesi M.
Farmaco
2002,
57:
321
8
Szewczyk J.
J.
Heterocycl. Chem.
1988,
25:
1809
9
Jin Z.
Nat.
Prod. Rep.
2005,
22:
111
10
Schwartz MA.
Holton RA.
J. Am. Chem. Soc.
1970,
92:
1090
11 Preparation data X-ray structure file
reference: CCDC 770222. See Supporting Information for full experimental details
and characterisation.
12 Alumina (neutral and basic) and Florisil
were also used as well as several basic ion exchange resins with
a catch and release procedure although these showed no benefits
in terms of isolated yield or purities.
13 Preparation data X-ray structure file
reference: CCDC 770223. See Supporting Information for full experimental details
and characterisation.
14
Appukkuttan P.
Van der Eycken E.
Eur.
J. Org. Chem.
2008,
5867
15 In one of the rotamers H-6a and
the H-6b are, respectively, located at δ = 4.80
and 2.99 ppm are in an AB system with a coupling constant of 13.5
Hz. The high shift of H-6a is due to its position in the plane of
the carbonyl. In the minor rotamer they are in the same system with
a coupling constant of 14.5 Hz but at δ = 4.40
and 3.40 ppm, respectively. Moreover, COSY experiment showed that
the protons H-9a and H-8b, and the H-9b and H-8a do not, respectively, couple
because of their ca. 90˚ dihedral angle, thus confirming
the TBC conformation. See also: Landais Y.
Robin J.
Tetrahedron
1992,
48:
7185
16 Evidence of the indirect formation
of the catecholic intermediate substrate responsible for the autoactivation kinetics
of tyrosinase. See: Cooksey CJ.
Garratt PJ.
Land EJ.
Pavel S.
Ramsden CA.
Riley PA.
Smit NPM.
J. Biol. Chem.
1997,
272:
26226
17 Cresolase activity is the hydroxylation
of phenols while catecholase is reserved for the oxidation of catechols.
18
Sànchez-Ferrer A.
Rodriguez-López JN.
Garcia-Cànovas F.
Garcia-Carmona F.
Biochim. Biophys. Acta
1995,
1247:
1