RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258510
Catalyst-Free Process for the Synthesis of 5-Aryl-2-Oxazolidinones via Cycloaddition Reaction of Aziridines and Carbon Dioxide
Publikationsverlauf
Publikationsdatum:
22. Juli 2010 (online)
Abstract
A simple approach for facile synthesis of 5-aryl-2-oxazolidinones in excellent regioselectivity from aziridines under compressed CO2 conditions was developed in the absence of any catalyst and organic solvent. The reaction outcome was found to be tuned by subtly adjusting CO2 pressure. The adduct formed in situ of aziridine and CO2 is assumed to act as a catalyst in this reaction, which was also studied by means of in situ FT-IR technique.
Key words
carbon dioxide - aziridine - catalyst-free - 5-aryl-2-oxazolidinones
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Gawley RE.Campagna SA.Santiago M.Ren T. Tetrahedron: Asymmetry 2002, 13: 29 -
1b
Aurelio L.Brownlee RTC.Hughus AB. Chem. Rev. 2004, 104: 5823 -
1c
Makhtar TM.Wright GD. Chem. Rev. 2005, 105: 529 -
1d
Barbachyn MR.Ford CW. Angew. Chem. Int. Ed. 2003, 42: 2010 -
1e
Hoellman DB.Lin G.Rattan LMA.Jacobs MR.Appelbaum PC. Antimicrob. Agents Chemother. 2003, 47: 1148 -
2a
Ben-Ishai D. J. Am. Chem. Soc. 1956, 78: 4962 -
2b
Vo L.Ciula J.Gooding OW. Org. Process Res. Dev. 2003, 7: 514 -
2c
Close WJ. J. Am. Chem. Soc. 1951, 73: 95 -
2d
Lynn JW. inventors; US 2975187. ; Chem. Abstr. 1961, 55, 87561 -
2e
Steele AB. inventors; US 2868801. ; Chem. Abstr. 1959, 53, 56549 -
2f
Yoshida T.Kambe N.Ogawa A.Sonoda N. Phosphorus, Sulfur Relat. Elem. 1988, 38: 137 -
3a
Miller AW.Nguyen ST. Org. Lett. 2004, 6: 2301 -
3b
Shen YM.Duan WL.Shi M. Eur. J. Org. Chem. 2004, 3080 -
3c
Hancock MT.Pinhas AR. Tetrahedron Lett. 2003, 44: 5457 -
3d
Mu WH.Chasse GA.Fang DC. J. Phys. Chem. A. 2008, 112: 6708 -
3e
Sudo A.Morioka Y.Sanda F.Endo T. Tetrahedron Lett. 2004, 45: 1363 -
3f
Sudo A.Morioka Y.Koizumi E.Sanda F.Endo T. Tetrahedron Lett. 2003, 44: 7889 -
3g
Kawanami H.Ikushima Y. Tetrahedron Lett. 2002, 43: 3841 -
3h
Kawanami H.Matsumoto H.Ikushima Y. Chem. Lett. 2005, 34: 60 -
3i
Tascedda P.Dunach E. Chem. Commun. 2000, 449 -
3j
Du Y.Wu Y.Liu AH.He LN. J. Org. Chem. 2008, 73: 4709 -
3k
Wu Y.He LN.Du Y.Wang JQ.Miao CX.Li W. Tetrahedron 2009, 65: 6204 -
4a
Mitsudo T.Hori Y.Yamakawa Y.Watanabe Y. Tetrahedron Lett. 1987, 28: 4417 -
4b
Shi M.Shen YM. J. Org. Chem. 2002, 67: 16 -
4c
Costa M.Chiusoli GP.Rizzardi M. Chem. Commun. 1996, 1699 -
4d
Costa M.Chiusoli GP.Taffurelli D.Dalmonego G. J. Chem. Soc., Perkin Trans. 1 1998, 1541 -
4e
Maggi R.Bertolotti C.Orlandini E.Oro C.Sartoria G.Selvab M. Tetrahedron Lett. 2007, 48: 2131 -
4f
Kayaki Y.Yamamoto M.Suzuki T.Ikariya T. Green Chem. 2006, 8: 1019 -
5a
Gu YL.Zhang QH.Duan ZY.Zhang J.Zhang SG.Deng YQ. J. Org. Chem. 2005, 70: 7376 -
5b
Jiang HF.Zhao JW. Tetrahedron Lett. 2009, 50: 60 -
5c
Fournier J.Brunean C.Dixneuf PH. Tetrahedron Lett. 1990, 31: 1721 -
5d
Zhang QH.Shi F.Gu YL.Yang J.Deng YQ. Tetrahedron Lett. 2005, 46: 5907 -
5e
Jiang HF.Zhao JW.Wang AZ. Synthesis 2008, 763 -
6a
Matsuda H.Baba A.Nomufa R.Korl M.Ogawa S. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24: 239 -
6b
Tominaga K.Sasaki Y. Synlett 2002, 307 -
6c
Kubota Y.Kodaka M.Tomohiro T.Okuno H. J. Chem. Soc., Perkin Trans. 1 1993, 5 -
6d
Kodaka M.Tomihiro T.Lee AL.Okuno H. J. Chem. Soc., Chem. Commun. 1989, 1479 -
6e
Paz J.Perez-Balado C.Iglesias B.Munoz L. Synlett 2009, 395 -
6f
Dinsmore CJ.Mercer SP. Org. Lett. 2004, 6: 2885 -
6g
Patil YP.Tambade PJ.Jagtap SR.Bhanage BM. J. Mol. Catal. A: Chem. 2008, 289: 14 -
6h
Du Y.Wang JQ.Chen JY.Cai F.Tian JS.Kong DL.He LN. Tetrahedron Lett. 2006, 47: 1271 -
6i
Bhanage BM.Fujita S.Ikushima Y.Arai M. Green Chem. 2003, 5: 340 -
6j
Bhanage BM.Fujita S.Ikushima Y.Arai M. Green Chem. 2004, 6: 78 -
6k
Fujita S.Kanamaru H.Senboku H.Arai M. Int. J. Mol. Sci. 2006, 7: 438 - 7
Yoo WJ.Li CJ. Adv. Synth. Catal. 2008, 350: 1503 -
8a
Ihata O.Kayaki Y.Ikariya T. Angew. Chem. Int. Ed. 2004, 43: 717 -
8b
Ihata O.Kayaki Y. Macromolecules 2005, 38: 6429 -
8c
Soga K.Chiang WY.Ikeda S.
J. Polym. Sci., Polym. Chem. Ed. 1974, 12: 121 -
8d
Lundberg RD,Albans S, andMontgomery DR. inventors; US 3523924. ; Chem. Abstr. 1970, 73, 111037 -
9a
Jessop PG.Ikariya T.Noyori R. Chem. Rev. 1999, 99: 475 -
9b
Green
Chemistry Using Liquid and Supercritical Carbon Dioxide
DeSimone JM.Tumas W. Oxford University; New York: 2003. -
9c
Chemical
Synthesis Using Supercritical Fluids
Jessop PG.Leitner W. Wiley-VCH; Weinheim: 1999. -
9d
Leitner W. Acc. Chem. Res. 2002, 35: 746 -
9e
Beckman EJ. J. Supercrit. Fluids 2004, 28: 121 -
9f
Prajapati D.Gohain M. Tetrahedron 2004, 60: 815 - 10
Lu XB.Xiu JH.He R.Jin K.Luo LM.Feng X.
J. Appl. Catal. A 2004, 275: 73 - 13
Kong DL.He LN.Wang JQ. Catal. Commun. 2010, 11: 992 - CO2 activation by tertiary amines:
-
14a
Pérez ER.Franco DW. Tetrahedron Lett. 2002, 43: 4091 -
14b
Endo T.Nagai D. Macromolecules 2004, 37: 2007 -
14c
Phan L.Andreatta JR.Horvey LK.Edie CF.Luco AL.Mirchandani A.Darensbourg DJ.Jessop PG. J. Org. Chem. 2008, 73: 127 -
14d
Pereira FS.deAzevedo ER. Tetrahedron 2008, 64: 10097 -
14e
North M.Pasquale R. Angew. Chem. Int. Ed. 2009, 48: 2946 -
14f
Wykes A.MacNeil SL. Synlett 2007, 107 -
14g
Masahiro YF.MacFarlane DR. Electrochem. Commun. 2006, 8: 445 -
14h
Masahiro YF.Johansson K. Tetrahedron Lett. 2006, 47: 2755 -
14i
Ying AG.Chen XZ.Ye WD. Tetrahedron Lett. 2009, 50: 1653 - 15 Formation of Et2NH with
CO2 identified by ¹H NMR:
Kong DL.He LN.Wang JQ. Synlett 2010, 1276
Reference and Notes
Typical Procedure
for the Carboxylation of Aziridine with CO
2
In
a typical reaction, the carboxylation of aziridine with CO2 was
carried out in a 25 mL stainless steel autoclave. Aziridine (1 mmol)
was charged into the reactor at r.t. CO2 was introduced
into the autoclave, and then the mixture was stirred at predetermined
temperature for 20 min to reach the equilibration. The pressure
was then adjusted to the desired pressure, and the mixture was stirred
continuously. When the reaction finished, the reactor was cooled
in ice-water and CO2 was ejected slowly. An aliquot of
sample was taken from the resultant mixture and dissolved in dry
CH2Cl2 for GC analysis. GC analyses were performed
on Shimadzu GC-2014, equipped with a capillary column (RTX-5, 30 m × 0.25
mm × 0.25 µm) using a flame-ionization
detector. The residue was purified by column chromatography on silica
gel (eluting with 8:1 to 1:1 PE-EtOAc) to furnish the product.
The products were further identified by ¹H NMR, ¹³C
NMR, and MS which are consistent with those reported in the literature³a-j and
in good agreement with the assigned structures.
Spectral characteristics for representative
examples of the products were provided.
3-Ethyl-5-phenyl-2-oxazolidinone
(2a)
Colorless liquid. ¹H NMR
(300 MHz, CDCl3): δ = 1.17
(t, 3 H, J = 7.2
Hz), 3.29-3.45 (m, 3 H), 3.92 (t, 1 H, J = 8.7
Hz), 5.48 (t, 1 H, J = 7.8
Hz), 7.34-7.42 (m, 5 H). ¹³C
NMR (75 MHz, CDCl3): δ = 12.4,
38.8, 51.5, 74.2, 125.4, 128.6, 128.8, 138.8, 157.5. ESI-MS: m/z calcd for C11H13NO2: 191.09;
found: 192.29 [M + H]+,
214.38 [M + Na]+,
405.01 [2 M + Na]+.
3-Ethyl-4-phenyl-2-oxazolidinone (3a)
Colorless
liquid. ¹H NMR (300 MHz, CDCl3): δ = 1.05
(t, 3 H, J = 5.4
Hz), 2.79-2.88 (m, 1 H), 3.48-3.57 (m, 1 H), 4.10 (t,
1 H, J = 6.0
Hz), 4.62 (t, 1 H, J = 6.6
Hz), 4.81 (t, 1 H, J = 5.4
Hz),7.30-7.44 (m, 5 H). ¹³C
NMR (75 MHz, CDCl3): δ = 12.1,
36.9, 59.4, 69.8, 127.0, 129.0, 129.2, 137.9, 158.1. ESI-MS: m/z calcd for C11H13NO2:
191.09; found: 192.29 [M + H]+,
214.38 [M + Na]+.