Synlett 2010(16): 2461-2464  
DOI: 10.1055/s-0030-1258563
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Synthesis of Conjugated (E)-Enynones via Two Types of Cross-Coupling Reaction

Masayuki Hoshi*, Hirokazu Yamazaki, Mitsuhiro Okimoto
Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
Fax: +81(157)247719; e-Mail: hoshi-m@chem.kitami-it.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 14 July 2010
Publikationsdatum:
03. September 2010 (online)

Abstract

(Trimethylsilyl)ethynyl bromide can be easily transformed into conjugated (E)-enynones, whose skeleton consists of consecutive carbonyl, ethynyl, and (E)-ethenyl units, via a one-pot multicomponent Suzuki-type reaction-Sonogashira reaction sequence. Thus, a three-component coupling of (trimethylsilyl)ethynyl bromide, (E)-alk-1-enyldisiamylborane and acid chloride is achieved in a two-step, one-pot procedure, in which (E)-alk-1-enyl group is installed as nucleophile in the sp-carbon atom attached to bromine atom and acyl group is installed as electrophile in the other sp-carbon atom.

    References and Notes

  • For example, see:
  • 1a Thompson CF. Jamison TF. Jacobsen EN. J. Am. Chem. Soc.  2001,  123:  9974 
  • 1b Marco-Contelles J. de Opazo E. J. Org. Chem.  2002,  67:  3705 
  • 1c Aoki S. Matsui K. Wei H. Murakami N. Kobayashi M. Tetrahedron  2002,  58:  5417 
  • For example, see:
  • 2a Arcadi A. Marinelli F. Rossi E. Tetrahedron  1999,  55:  13233 
  • 2b Adlington RM. Baldwin JE. Pritchard GJ. Spencer KC. Tetrahedron Lett.  2000,  41:  575 
  • 2c Wang X.-J. Tan J. Zhang L. Org. Lett.  2000,  2:  3107 
  • 2d Jeevanandam A. Narkunan K. Ling Y.-C. J. Org. Chem.  2001,  66:  6014 
  • 2e Grotjahn DB. Van S. Combs D. Lev DA. Schneider C. Rideout M. Meyer C. Hernandez G. Mejorado L. J. Org. Chem.  2002,  67:  9200 
  • For example, see:
  • 3a Dodero VI. Koll LC. Faraoni MB. Mitchell TN. Podestá JC. J. Org. Chem.  2003,  68:  10087 
  • 3b Trost BM. Ball ZT. J. Am. Chem. Soc.  2004,  126:  13942 
  • 4a Tohda Y. Sonogashira K. Hagihara N. Synthesis  1977,  777 
  • 4b Chowdhury C. Kundu NG. Tetrahedron Lett.  1996,  37:  7323 
  • 4c Chowdhury C. Kundu NG. Tetrahedron  1999,  55:  7011 
  • 4d Wang J.-X. Wei B. Huang D. Hu Y. Bai L. Synth. Commun.  2001,  31:  3337 
  • 4e Wang J.-X. Wei B. Hu Y. Liu Z. Fu Y. Synth. Commun.  2001,  31:  3527 
  • 4f Karpov AS. Müller TJJ. Org. Lett.  2003,  5:  3451 
  • 4g Guo M. Li D. Zhang Z. J. Org. Chem.  2003,  68:  10172 
  • 4h Yin J. Wang X. Liang Y. Wu X. Chen B. Ma Y. Synthesis  2004,  331 
  • 4i Alonso DA. Nájera C. Pacheco MC. J. Org. Chem.  2004,  69:  1615 
  • 4j Chen L. Li C.-J. Org. Lett.  2004,  6:  3151 
  • 4k Cox RJ. Ritson DJ. Dane TA. Berge J. Charmant JPH. Kantacha A. Chem. Commun.  2005,  1037 
  • 4l Palimkar SS. Kumar PH. Jogdand NR. Daniel T. Lahoti RJ. Srinivasan KV. Tetrahedron Lett.  2006,  47:  5527 
  • 4m Likhar PR. Subhas MS. Roy M. Roy S. Kantam ML. Helv. Chim. Acta  2008,  91:  259 
  • 4n Lv Q.-R. Meng X. Wu J.-S. Gao Y.-J. Li C.-L. Zhu Q.-Q. Chen B.-H. Catal. Commun.  2008,  9:  2127 
  • 4o Chen J.-Y. Lin T.-C. Chen S.-C. Chen A.-J. Mou C.-Y. Tsai F.-Y. Tetrahedron  2009,  65:  10134 
  • 4p Bakherad M. Keivanloo A. Bahramian B. Rajaie M. Tetrahedron Lett.  2010,  51:  33 
  • 5 Alkynyllithium: Stefani HA. Cella R. Dörr FA. de Pereira CMP. Gomes FP. Zeni G. Tetrahedron Lett.  2005,  46:  2001 
  • Alkynylborane:
  • 6a Oh CH. Reddy VR. Tetrahedron Lett.  2004,  45:  8545 
  • 6b Nishihara Y. Saito D. Inoue E. Okada Y. Miyazaki M. Inoue Y. Takagi K. Tetrahedron Lett.  2010,  51:  306 
  • Alkynylaluminium:
  • 7a Wakamatsu K. Okuda Y. Oshima K. Nozaki H. Bull. Chem. Soc. Jpn.  1985,  58:  2425 
  • 7b Wang B. Bonin M. Micouin L. J. Org. Chem.  2005,  70:  6126 
  • Alkynylsilane:
  • 8a Ito H. Arimoto K. Sensui H. Hosomi A. Tetrahedron Lett.  1997,  38:  3977 
  • 8b Yadav JS. Reddy BVS. Reddy MS. Synlett  2003,  1722 
  • 8c Yadav JS. Reddy BVS. Reddy MS. Parimala G. Synthesis  2003,  2390 
  • 9 Alkynylzinc: Negishi E. Bagheri V. Chatterjee S. Luo F.-T. Miller JA. Stoll AT. Tetrahedron Lett.  1983,  24:  5181 
  • 10 Alkynylcopper: Qian H. Shao L.-X. Huang X. Synlett  2001,  1571 
  • 11 Alkynylgallate: Han Y. Fang L. Tao W.-T. Huang Y.-Z. Tetrahedron Lett.  1995,  36:  1287 
  • Alkynylindium:
  • 12a Pérez I. Sestelo JP. Sarandeses LA. J. Am. Chem. Soc.  2001,  123:  4155 
  • 12b Augé J. Lubin-Germain N. Seghrouchni L. Tetrahedron Lett.  2003,  44:  819 
  • Alkynyltin:
  • 13a Logue MW. Teng K. J. Org. Chem.  1982,  47:  2549 
  • 13b Kuhn H. Neumann WP. Synlett  1994,  123 
  • 13c Lerebours B. Camacho-Soto A. Wolf C. J. Org. Chem.  2005,  70:  8601 
  • Alkynylstibine:
  • 14a Kakusawa N. Yamaguchi K. Kurita J. Tsuchiya T. Tetrahedron Lett.  2000,  41:  4143 
  • 14b Kakusawa N. Tobiyasu Y. Yasuike S. Yamaguchi K. Seki H. Kurita J. J. Organomet. Chem.  2006,  691:  2953 
  • 15 Alkynylthallium: Marko IE. Southern JM. J. Org. Chem.  1990,  55:  3368 
  • 16a Kobayashi T. Tanaka M. J. Chem. Soc., Chem. Commun.  1981,  333 
  • 16b Delaude L. Masdeu AM. Alper H. Synthesis  1994,  1149 
  • 16c Arcadi A. Cacchi S. Marinelli F. Pace P. Sanzi G. Synlett  1995,  823 
  • 16d Kang S.-K. Lim K.-H. Ho P.-S. Kim W.-Y. Synthesis  1997,  874 
  • 16e Mohamed Ahmed MS. Mori A. Org. Lett.  2003,  5:  3057 
  • 16f Liang B. Huang M. You Z. Xiong Z. Lu K. Fathi R. Chen J. Yang Z. J. Org. Chem.  2005,  70:  6097 
  • 16g Sans V. Trzeciak AM. Luis S. Ziókowski JJ. Catal. Lett.  2006,  109:  37 
  • 16h Rahman MT. Fukuyama T. Kamata N. Sato M. Ryu I. Chem. Commun.  2006,  2236 
  • 16i Ma W. Li X. Yang J. Liu Z. Chen B. Pan X. Synthesis  2006,  2489 
  • 16j Liu J. Chen J. Xia C. J. Catal.  2008,  253:  50 
  • 16k Tambade PJ. Patil YP. Nandurkar NS. Bhanage BM. Synlett  2008,  886 
  • 16l Liu J. Peng X. Sun W. Zhao Y. Xia C. Org. Lett.  2008,  10:  3933 
  • 16m Fusano A. Fukuyama T. Nishitani S. Inouye T. Ryu I. Org. Lett.  2010,  12:  2410 
  • 17 Vong BG. Kim SH. Abraham S. Theodorakis EA. Angew. Chem. Int. Ed.  2004,  43:  3947 
  • 18 Inhülsen I. Margaretha P. Org. Lett.  2010,  12:  728 
  • 19a Shergina SI. Sokolov IE. Zanina AS. Mendeleev Commun.  1994,  4:  207 
  • 19b Van den Hoven BG. El Ali B. Alper H. J. Org. Chem.  2000,  65:  4131 
  • 20a Hoshi M. Nakayabu H. Shirakawa K. Synthesis  2005,  1991 
  • 20b Hoshi M. Suzuki S. Saitoh S. Okimoto M. Shirakawa K. Tetrahedron Lett.  2007,  48:  119 
  • 20c Hoshi M. Iizawa T. Okimoto M. Shirakawa K. Synthesis  2008,  3591 
  • 21a Hoshi M. Shirakawa K. Synlett  2002,  1101 
  • 21b Hoshi M. Kawamura N. Shirakawa K. Synthesis  2006,  1961 
22

Compound 2a was formed in about 75% GC yield based on Me3SiC≡CBr employed, see ref. 21.

23

Considering that acid chloride would be consumed by reaction with residual both NaOMe and MeOH, an excess amount of benzoyl chloride was employed in this one-pot reaction. Indeed, using a stoichiometric amount of benzoyl chloride (0.5 mmol), a decrease in the yield of product 3aa was observed.

24

Among amine bases including i-Pr2NEt, Et3N was the base of choice for the cross-coupling reaction with benzoyl chloride.

25

To a solution of BH3 (1 mmol) in THF (3 mL) was added 2-methylbut-2-ene (0.14 g, 2 mmol) dropwise at -15 ˚C under argon, and the mixture was stirred for 2 h at 0 ˚C to form a solution of disiamylborane in THF. To this solution was added oct-1-yne (0.11 g, 1 mmol) dropwise at -15 ˚C, and the mixture was stirred for 2 h at 0 ˚C. A solution of (E)-oct-1-enyldisiamylborane (1a, 1 mmol) in THF, thus prepared, was cooled to -15 ˚C, and Cu(acac)2 (0.013 g, 0.05 mmol) was added to the solution under a flow of argon, followed by dropwise addition of (trimethylsilyl)ethynyl bromide (0.119 g, 0.67 mmol) and NaOMe (1 M, 0.75 mL, 0.75 mmol). The resulting mixture was allowed to warm gradually to r.t. and stirred overnight. Methanol resulting from 1 M NaOMe was removed under reduced pressure, accompanied by the solvent. After addition of THF (3 mL) to the residue under argon, the resulting mixture including (E)-dec-3-en-1-yne (2a) was cooled to 0 ˚C, and Pd(OAc)2 (0.002 g, 0.01 mmol) and Ph3P (0.005 g, 0.02 mmol) were added successively under a flow of argon, followed by dropwise addition of benzoyl chloride (0.141 g, 1 mmol) and Et3N (0.101 g, 1 mmol). The resultant mixture was stirred for 2 h at r.t. and then oxidized by the successive addition of 3 M NaOH (1 mL) and 30% H2O2 (0.5 mL) at 0 ˚C. After being stirred for 1 h at this temperature, the mixture was extracted three times with Et2O. The combined extracts were washed with brine, dried over Na2SO4, and concentrated. The residue was purified by flash chromatography on silica gel, with hexane-CH2Cl2 (1:1) as eluent, to give (E)-1-phenylundec-4-en-2-yn-1-one (3aa, 0.103 g, 86%).
Compound 3aa: ¹H NMR (500 MHz, CDCl3): δ = 0.89 (t, J = 7.1 Hz, 3 H), 1.25-1.35 (m, 6 H), 1.42-1.49 (m, 2 H), 2.21-2.26 (m, 2 H), 5.74 (dt, J = 16.1, 1.5 Hz, 1 H), 6.63 (dt, J = 16.1, 7.1 Hz, 1 H), 7.46-7.50 (m, 2 H), 7.58-7.62 (m, 1 H), 8.13-8.16 (m, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 14.06 (CH3), 22.56 (CH2), 28.22 (CH2), 28.78 (CH2), 31.59 (CH2), 33.64 (CH2), 86.05 (≡C), 92.85 (≡C), 107.65 (=CH), 128.50 (2 × =CH), 129.50 (2 × =CH), 133.90 (=CH), 136.92 (=C), 153.10 (=CH), 178.11 (C=O). IR (neat): 2954, 2927, 2856, 2183, 1641, 1620, 1596, 1579, 1448, 1313, 1265, 1174, 956, 937, 700 cm. HRMS (EI): m/z calcd for C17H20O: 240.1514; found: 240.1508.

26

Compounds 2b-d were formed in 72-74% GC yields based on Me3SiC≡CBr employed; unpublished results.