Synlett 2010(17): 2597-2600  
DOI: 10.1055/s-0030-1258575
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Synthesis of 2,3,4-Trisubstituted Quinolines via Friedländer Annulation with Nanoporous Cage-Type Aluminosilicate AlKIT-5 Catalyst

S. Chauhana, R. Chakravartia, S. M. J. Zaidib, Salem S. Al-Deyabc, B. V. Subba Reddy*a,d, A. Vinu*a,d
a International Center for Materials Nanoarchitectonics, WPI Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
Fax: +81(29)8604706; e-Mail: vinu.ajayan@nims.go.jp;
b Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
c Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
d NIMS-IICT Materials Research Center, Indian Institute of Chemical Technology, Hyderabad 500 007, India
Further Information

Publication History

Received 27 July 2010
Publication Date:
23 September 2010 (online)

Abstract

2-Aminoaryl ketones undergo smooth Friedländer condensation/annulation with α-methyleneketones on the surface of nanoporous aluminosilicate catalyst to afford the corresponding quinoline derivatives in good yields with high selectivity due to its high surface area, large pore volume, and high acidity. The use of highly acidic and reusable AlKIT-5 catalyst makes the Friedländer annulation simple, convenient, and practical.

    References and Notes

  • 1a Larsen RD. Corley EG. King AO. Carrol JD. Davis P. Verhoeven TR. Reider PJ. Labelle M. Gauthier JY. Xiang YB. Zamboni RJ. J. Org. Chem.  1996,  61:  3398 
  • 1b Chen YL. Fang KC. Sheu J.-Y. Hsu S.-L. Tzeng C.-C. J. Med. Chem.  2001,  44:  2374 
  • 1c Roma G. Braccio MD. Grossi G. Mattioli F. Ghia M. Eur. J. Med. Chem.  2000,  35:  1021 
  • 2 Dubé D. Blouin M. Brideau C. Chan C.-C. Desmarais S. Ethier D. Falgueyret J.-P. Friesen RW. Girard M. Girard Y. Guay J. Riendeau D. Tagari P. Young RN. Bioorg. Med. Chem. Lett.  1998,  8:  1255 
  • 3 Maguire MP. Sheets KR. McVety K. Spada AP. Zilberstein A. J. Med. Chem.  1994,  37:  2129 
  • 4a Zhang X. Shetty AS. Jenekhe SA. Macromolecules  1999,  32:  7422 
  • 4b Zhang X. Jenekhe SA. Macromolecules  2000,  33:  2069 
  • 4c Jenekhe SA. Lu L. Alam MM. Macromolecules  2001,  34:  7315 
  • 5a Cho CS. Oh BH. Kim T.-J. Shim SC. Chem. Commun.  2000,  1885 
  • 5b Jiang B. Si Y.-G. J. Org. Chem.  2002,  67:  9449 
  • 6a Skraup ZH. Ber. Dtsch. Chem. Ges.  1880,  13:  2086 
  • 6b Friedländer P. Ber. Dtsch. Chem. Ges.  1882,  15:  2572 
  • 6c Manske RHF. Kulka M. Org. React.  1953,  7:  59 
  • 6d Linderman RJ. Kirollos SK. Tetrahedron Lett.  1990,  31:  2689 
  • 6e Theoclitou M.-E. Robinson LA. Tetrahedron Lett.  2002,  43:  3907 
  • 7a Cheng C.-C. Yan S.-J. Org. React.  1982,  28:  37 
  • 7b Thummel RP. Synlett  1992,  1 
  • 7c Eckert H. Angew. Chem., Int. Ed. Engl.  1981,  20:  208 
  • 7d Gladiali S. Chelucci G. Mudadu MS. Gastaut MA. Thummel RP. J. Org. Chem.  2001,  66:  400 
  • 8 Fehnel EA. J. Heterocycl. Chem.  1966,  31:  2899 
  • 9a Strekowski L. Czamy A. J. Fluorine Chem.  2000,  104:  281 
  • 9b Hu Y.-Z. Zang G. Thummel RP. Org. Lett.  2003,  5:  2251 
  • 9c Jia C.-S. Zhang Z. Tu S.-J. Wang G.-W. Org. Biomol. Chem.  2006,  4:  104 
  • 10a McNaughton BR. Miller BL. Org. Lett.  2003,  5:  4257 
  • 10b Yadav JS. Reddy BVS. Sreedhar P. Rao RS. Nagaiah K. Synthesis  2004,  2381 
  • 10c Arcadi A. Chiarini M. Di Giuseppe S. Marinelli F. Synlett  2003,  203 
  • 10d Palimkar SS. Siddiqui SA. Daniel T. Lahoti RJ. Srinivasan KV. J. Org. Chem.  2003,  68:  9371 
  • 10e Wu J. Xia H.-G. Gao K. Org. Biomol. Chem.  2006,  4:  126 
  • 10f Varala R. Enugala R. Adapa SR. Synthesis  2006,  3825 
  • 11a Chakravarti R. Kalita P. Selvan ST. Oveisi H. Balasubramanian VV. Kantam ML. Vinu A. Green Chem.  2010,  12:  49 
  • 11b Shobha D. Chari MA. Mano A. Selvan ST. Mukkanti K. Vinu A. Tetrahedron  2009,  65:  10608 
  • 11c Vinu A. Kalita P. Balasubramanian VV. Oveisi H. Selvan ST. Mano A. Chari MA. Reddy BVS. Tetrahedron Lett.  2009,  50:  7132 
  • 11d Chari MA. Karthikeyan G. Pandurangan A. Naidu TS. Sathyaseelan B. Zaidi SMJ. Vinu A. Tetrahedron Lett.  2010,  51:  2629 
12

General Procedure A mixture of 2-aminoaryl ketone (1.0 mmol), α-methylene ketone (1.0 mmol), and AlKIT-5 (50 mg) in EtOH (5 mL) was stirred at 80 ˚C for the specified time (see Table  [¹] ). After completion of the reaction, as monitored by TLC, the catalyst was separated by filtration, and the residue was washed with EtOH (10 mL). The combined organic layers were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography using EtOAc-n-hexane (1:9) as eluent to afford the pure quinoline derivative.
Spectral Data for Selected Products
Ethyl 2-Methyl-4-phenylquinoline-3-carboxylate (3a) Solid, mp 98 ˚C. IR (KBr): ν = 3030, 2960, 1700, 1605, 1568, 1482, 905 cm. ¹H NMR (200 MHz, CDCl3): δ = 0.95 (t, J = 7.0 Hz, 3 H), 2.80 (s, 3 H), 4.05 (q, J = 7.0 Hz, 2 H), 7.35-7.50 (m, 6 H), 7.55 (d, J = 8.1 Hz, 1 H), 7.70 (t, J = 7.9 Hz, 1 H), 8.05 (d, J = 8.1 Hz, 1 H). MS (EI): m/z = 291 [M]+, 85, 263, 246, 218, 176, 150.
3-Acetyl-2-methyl-4-phenylquinoline (3d) Solid, mp 115 ˚C. IR (KBr): ν = 3027, 2960, 1705, 1610, 1569, 1485, 705 cm. ¹H NMR (200 MHz, CDCl3): δ = 1.95 (s, 3 H), 2.60 (s, 3 H), 7.25-7.30 (m, 2 H), 7.35 (t, J = 8.0 Hz, 1 H), 7.40-7.50 (m, 3 H), 7.55 (d, J = 8.2 Hz, 1 H), 7.65 (t, J = 8.0 Hz, 1 H), 8.00 (d, J = 8.2 Hz, 1 H). MS (EI): m/z = 261 [M]+, 246, 218, 176, 150, 43. 9-Phenyl-1,2,3,4-tetrahydroacridine (3e) Solid, mp 137 ˚C. IR (KBr): ν = 3057, 2945, 1609, 1575, 1480, 1210, 708 cm. ¹H NMR (200 MHz, CDCl3): δ = 1.75-1.85 (m, 2 H), 1.95-2.05 (m, 2 H), 2.60 (t, J = 6.7 Hz, 2 H), 3.20 (t, J = 6.9 Hz, 2 H), 7.20-7.32 (m, 3 H), 7.40-7.60 (m, 5 H), 8.00 (d, J = 8.2 Hz, 1 H). MS (EI): m/z = 259 [M]+, 230, 182, 176, 57.

13

Syntheses of AlKIT-5 Catalyst with Different n Si /n Al Ratio
The AlKIT-5 materials with different nSi/nAl ratios were synthesized using Pluronic F127 as the template in an acidic medium. In a typical synthesis, 5.0 g of F127 was dissolved in 3 g of HCl (35 wt%) and 240 g of distilled H2O. To this mixture, 24.0 g of TEOS and the required amount of the aluminium isopropoxide were added, and the resulting mixture was stirred for 24 h at 45 ˚C. Subsequently, the reaction mixture was heated for 24 h at 100 ˚C under static conditions for hydrothermal treatment. After hydrothermal treatment, the final solid product was filtered off and then dried at 100 ˚C without washing. The product was calcined at 540 ˚C for 10 h. The samples are denoted as AlKIT-5 (x)where x denotes the nSi/nAl ratio in the final product.
The molar gel composition of the reaction mixture was
SiO2/Al2O3/F127/HCl/H2O = 1.0:0.041-0.071:0.0035:0.25:116.6.