Subscribe to RSS
DOI: 10.1055/s-0030-1258575
Efficient Synthesis of 2,3,4-Trisubstituted Quinolines via Friedländer Annulation with Nanoporous Cage-Type Aluminosilicate AlKIT-5 Catalyst
Publication History
Publication Date:
23 September 2010 (online)
Abstract
2-Aminoaryl ketones undergo smooth Friedländer condensation/annulation with α-methyleneketones on the surface of nanoporous aluminosilicate catalyst to afford the corresponding quinoline derivatives in good yields with high selectivity due to its high surface area, large pore volume, and high acidity. The use of highly acidic and reusable AlKIT-5 catalyst makes the Friedländer annulation simple, convenient, and practical.
Key words
o-aminoaryl ketones - nanoporous catalysts - domino reactions - quinolines
-
1a
Larsen RD.Corley EG.King AO.Carrol JD.Davis P.Verhoeven TR.Reider PJ.Labelle M.Gauthier JY.Xiang YB.Zamboni RJ. J. Org. Chem. 1996, 61: 3398 -
1b
Chen YL.Fang KC.Sheu J.-Y.Hsu S.-L.Tzeng C.-C. J. Med. Chem. 2001, 44: 2374 -
1c
Roma G.Braccio MD.Grossi G.Mattioli F.Ghia M. Eur. J. Med. Chem. 2000, 35: 1021 - 2
Dubé D.Blouin M.Brideau C.Chan C.-C.Desmarais S.Ethier D.Falgueyret J.-P.Friesen RW.Girard M.Girard Y.Guay J.Riendeau D.Tagari P.Young RN. Bioorg. Med. Chem. Lett. 1998, 8: 1255 - 3
Maguire MP.Sheets KR.McVety K.Spada AP.Zilberstein A. J. Med. Chem. 1994, 37: 2129 -
4a
Zhang X.Shetty AS.Jenekhe SA. Macromolecules 1999, 32: 7422 -
4b
Zhang X.Jenekhe SA. Macromolecules 2000, 33: 2069 -
4c
Jenekhe SA.Lu L.Alam MM. Macromolecules 2001, 34: 7315 -
5a
Cho CS.Oh BH.Kim T.-J.Shim SC. Chem. Commun. 2000, 1885 -
5b
Jiang B.Si Y.-G. J. Org. Chem. 2002, 67: 9449 -
6a
Skraup ZH. Ber. Dtsch. Chem. Ges. 1880, 13: 2086 -
6b
Friedländer P. Ber. Dtsch. Chem. Ges. 1882, 15: 2572 -
6c
Manske RHF.Kulka M. Org. React. 1953, 7: 59 -
6d
Linderman RJ.Kirollos SK. Tetrahedron Lett. 1990, 31: 2689 -
6e
Theoclitou M.-E.Robinson LA. Tetrahedron Lett. 2002, 43: 3907 -
7a
Cheng C.-C.Yan S.-J. Org. React. 1982, 28: 37 -
7b
Thummel RP. Synlett 1992, 1 -
7c
Eckert H. Angew. Chem., Int. Ed. Engl. 1981, 20: 208 -
7d
Gladiali S.Chelucci G.Mudadu MS.Gastaut MA.Thummel RP. J. Org. Chem. 2001, 66: 400 - 8
Fehnel EA. J. Heterocycl. Chem. 1966, 31: 2899 -
9a
Strekowski L.Czamy A. J. Fluorine Chem. 2000, 104: 281 -
9b
Hu Y.-Z.Zang G.Thummel RP. Org. Lett. 2003, 5: 2251 -
9c
Jia C.-S.Zhang Z.Tu S.-J.Wang G.-W. Org. Biomol. Chem. 2006, 4: 104 -
10a
McNaughton BR.Miller BL. Org. Lett. 2003, 5: 4257 -
10b
Yadav JS.Reddy BVS.Sreedhar P.Rao RS.Nagaiah K. Synthesis 2004, 2381 -
10c
Arcadi A.Chiarini M.Di Giuseppe S.Marinelli F. Synlett 2003, 203 -
10d
Palimkar SS.Siddiqui SA.Daniel T.Lahoti RJ.Srinivasan KV. J. Org. Chem. 2003, 68: 9371 -
10e
Wu J.Xia H.-G.Gao K. Org. Biomol. Chem. 2006, 4: 126 -
10f
Varala R.Enugala R.Adapa SR. Synthesis 2006, 3825 -
11a
Chakravarti R.Kalita P.Selvan ST.Oveisi H.Balasubramanian VV.Kantam ML.Vinu A. Green Chem. 2010, 12: 49 -
11b
Shobha D.Chari MA.Mano A.Selvan ST.Mukkanti K.Vinu A. Tetrahedron 2009, 65: 10608 -
11c
Vinu A.Kalita P.Balasubramanian VV.Oveisi H.Selvan ST.Mano A.Chari MA.Reddy BVS. Tetrahedron Lett. 2009, 50: 7132 -
11d
Chari MA.Karthikeyan G.Pandurangan A.Naidu TS.Sathyaseelan B.Zaidi SMJ.Vinu A. Tetrahedron Lett. 2010, 51: 2629
References and Notes
General Procedure
A
mixture of 2-aminoaryl ketone (1.0 mmol), α-methylene ketone
(1.0 mmol), and AlKIT-5 (50 mg) in EtOH (5 mL) was stirred at 80 ˚C
for the specified time (see Table
[¹]
).
After completion of the reaction, as monitored by TLC, the catalyst
was separated by filtration, and the residue was washed with EtOH
(10 mL). The combined organic layers were concentrated under reduced
pressure, and the crude product was purified by silica gel column
chromatography using EtOAc-n-hexane
(1:9) as eluent to afford the pure quinoline derivative.
Spectral Data for Selected Products
Ethyl 2-Methyl-4-phenylquinoline-3-carboxylate
(3a)
Solid, mp 98 ˚C. IR (KBr): ν = 3030,
2960, 1700, 1605, 1568, 1482, 905 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 0.95 (t, J = 7.0 Hz,
3 H), 2.80 (s, 3 H), 4.05 (q, J = 7.0
Hz, 2 H), 7.35-7.50 (m, 6 H), 7.55 (d, J = 8.1
Hz, 1 H), 7.70 (t, J = 7.9 Hz,
1 H), 8.05 (d, J = 8.1
Hz, 1 H). MS (EI): m/z = 291 [M]+, 85,
263, 246, 218, 176, 150.
3-Acetyl-2-methyl-4-phenylquinoline
(3d)
Solid, mp 115 ˚C. IR (KBr): ν = 3027,
2960, 1705, 1610, 1569, 1485, 705 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.95 (s,
3 H), 2.60 (s, 3 H), 7.25-7.30 (m, 2 H), 7.35 (t, J = 8.0 Hz, 1
H), 7.40-7.50 (m, 3 H), 7.55 (d, J = 8.2
Hz, 1 H), 7.65 (t, J = 8.0
Hz, 1 H), 8.00 (d, J = 8.2
Hz, 1 H). MS (EI): m/z = 261 [M]+,
246, 218, 176, 150, 43.
9-Phenyl-1,2,3,4-tetrahydroacridine
(3e)
Solid, mp 137 ˚C. IR (KBr): ν = 3057,
2945, 1609, 1575, 1480, 1210, 708 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.75-1.85
(m, 2 H), 1.95-2.05 (m, 2 H), 2.60 (t, J = 6.7
Hz, 2 H), 3.20 (t, J = 6.9
Hz, 2 H), 7.20-7.32 (m, 3 H), 7.40-7.60 (m, 5
H), 8.00 (d, J = 8.2
Hz, 1 H). MS (EI): m/z = 259 [M]+, 230,
182, 176, 57.
Syntheses of AlKIT-5
Catalyst with Different n
Si
/n
Al
Ratio
The AlKIT-5 materials with
different nSi/nAl ratios were synthesized
using Pluronic F127 as the template in an acidic medium. In a typical
synthesis, 5.0 g of F127 was dissolved in 3 g of HCl (35 wt%)
and 240 g of distilled H2O. To this mixture, 24.0 g of
TEOS and the required amount of the aluminium isopropoxide were
added, and the resulting mixture was stirred for 24 h at 45 ˚C.
Subsequently, the reaction mixture was heated for 24 h at 100 ˚C
under static conditions for hydrothermal treatment. After hydrothermal treatment,
the final solid product was filtered off and then dried at 100 ˚C
without washing. The product was calcined at 540 ˚C
for 10 h. The samples are denoted as AlKIT-5 (x)where x denotes
the nSi/nAl ratio in the final product.
The
molar gel composition of the reaction mixture was
SiO2/Al2O3/F127/HCl/H2O = 1.0:0.041-0.071:0.0035:0.25:116.6.