RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258576
Isomerization of Electron-Poor Alkynes to the Corresponding (E,E)-1,3-Dienes Using a Bifunctional Polymeric Catalyst Bearing Triphenylphosphine and Phenol Groups
Publikationsverlauf
Publikationsdatum:
23. September 2010 (online)
Abstract
The use of a bifunctional non-cross-linked polystyrene bearing both phosphine and phenol groups for the organocatalytic isomerization of alkynes bearing electron-withdrawing ester substituents to afford the corresponding (E,E)-dienes in excellent yield and stereoselectivity is described. When polystyrene functionalized with only phosphine groups was used as the catalyst, either low or no yield of the desired product was obtained. Thus both of the functional groups of the bifunctional polystyrene catalyst were essential for efficient catalysis to occur. This bifunctional polymeric catalyst was also used to synthesize (E,E,E)-trienes and (E,E)-diene-substituted 2(H)-pyran-2-ones from the corresponding alkynes.
Key words
organocatalysis - polymer-supported catalyst - alkyne isomerization - dienes - triphenylphosphine - phenol
- Supporting Information for this article is available online:
- Supporting Information
- 1
Trost BM.Kazmaier U. J. Am. Chem. Soc. 1992, 114: 7933 - 2
Guo C.Lu X. J. Chem. Soc., Perkins Trans. 1 1993, 1921 - 3
Rychnovsky SD.Kim J. J. Org. Chem. 1994, 59: 2659 - 4
Kwong CK.-W.Fu MY.Lam CS.-L.Toy PH. Synthesis 2008, 2307 -
5a
Li M.O’Doherty GA. Org. Lett. 2006, 8: 3987 -
5b
Li M.O’Doherty GA. Org. Lett. 2006, 8: 6087 -
5c
Xing Y.O’Doherty GA. Org. Lett. 2009, 11: 1107 -
6a
Wang Y.Jiang H.Liu H.Liu P. Tetrahedron Lett. 2005, 46: 3935 -
6b
Liu H.-L.Jiang H.-F.Xu L.Zhan H.-Y. Tetrahedron Lett. 2007, 48: 8371 - 7
Lu J.Toy PH. Chem. Rev. 2009, 109: 815 -
8a
Choi MKW.He HS.Toy PH. J. Org. Chem. 2003, 68: 9831 -
8b
Zhao L.-J.He HS.Shi M.Toy PH. J. Comb. Chem. 2004, 6: 680 -
8c
Harned AM.He HS.Toy PH.Flynn DL.Hanson PR. J. Am. Chem. Soc. 2005, 127: 52 -
8d
Zhao L.-J.Kwong CK.-W.Shi M.Toy PH. Tetrahedron 2005, 61: 12026 -
8e
He HS.Yan JJ.Shen R.Zhuo S.Toy PH. Synlett 2006, 563 -
8f
Leung PS.-W.Teng Y.Toy PH. Synlett 2010, 1997 - 9
Kwong CK.-W.Huang R.Zhang M.Shi M.Toy PH. Chem. Eur. J. 2007, 13: 2369 -
12a
Clark BR.Capon RJ.Lacey E.Tennant S.Gill JH. Org. Lett. 2006, 8: 701 -
12b
Coleman RS.Walczak MC. J. Org. Chem. 2006, 71: 9841 - 13 For 9a,
see:
Biagetti M.Bellina F.Carpita A.Rossi R. Tetrahedron Lett. 2003, 44: 607 - 14 For 9b,
see:
Fairlamb IJS.Lee AF.Loe-Mie FEM.Niemelae EH.O’Brien CT.Whitwood AC. Tetrahedron 2005, 61: 9827 - For 9c, see:
-
15a
Fu X.Zhang S.Yin J.Schumacher DP. Tetrahedron Lett. 2002, 43: 6673 -
15b
Kabalka GW.Dong G.Venkataiah B. Tetrahedron Lett. 2004, 45: 5139 -
15c
Luo Y.Wu J. Tetrahedron 2009, 65: 6810
References and Notes
We have previously reported the use of a cross-linked bifunctional analogue of 1 as a catalyst in Morita-Baylis-Hillman reactions, which have some mechanistic similarities to the isomerization reactions reported herein. However, due to its heterogeneous nature and poor swelling properties, it was less efficient than a corresponding cross-linked monofunctional analogue of 2. See ref. 8d for details.
11See Supporting Information for details.