RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258579
New Synthesis of 2,3-Diarylacridin-9(10H)-ones and (E)-2-Phenyl-4-styrylfuro[3,2-c]quinolines
Publikationsverlauf
Publikationsdatum:
23. September 2010 (online)
Abstract
A new synthesis of 2,3-diarylacridin-9(10H)-ones and (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines is described. This was accomplished by the Heck reaction of (E)-3-iodo-2-styrylquinolin-4(1H)-ones with styrene, leading to (E,E)-2,3-distyrylquinolin-4(1H)-ones, which when heated at high temperatures, cyclise in two different ways. Electrocyclisation and further in situ oxidation leads to 2,3-diarylacridin-9(10H)-ones and tautomerisation, cyclisation by nucleophilic addition and further in situ oxidation produces (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines.
Key words
(E)-2-styrylquinolin-4(1H)-ones - (E)-3-iodo-2-styrylquinolin-4(1H)-ones - (E,E)-2,3-distyrylquinolin-4(1H)-ones - 2,3-diarylacridin-9(10H)-ones - (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines - Heck reaction - electrocyclisation
-
1a
Tarus PK.Coombes PH.Crouch NR.Mulholland DA.Moodley B. Phytochemistry 2005, 66: 703 -
1b
Al-Rehaily AJ.Ahmad MS.Muhammad I.Al-Thukair AA.Perzanowski HP. Phytochemistry 2003, 64: 1405 -
1c
Naidoo D.Coombes PH.Mulholland DA.Crouch NR.Van den Bergh AJJ. Phytochemistry 2005, 66: 1724 -
1d
Wansi JD.Wandi J.Meva’a LM.Waffo AFK.Ranjit R.Khan SN.Asma A.Iqbal CM.Lallemand M.-C.Tillequin F.Fomum Tanee Z. Chem. Pharm. Bull. 2006, 54: 292 -
1e
Waffo AFK.Coombes PH.Crouch NR.Mulholland DA.El Amin SMM.Smith PJ. Phytochemistry 2007, 68: 663 -
1f
Kumar S.Raj K.Khare P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009, 48: 291 - 2
Tabarrini O.Cecchetti V.Fravolini A.Nocentini G.Barzi A.Sabatini S.Miao H.Sissi C. J. Med. Chem. 1999, 42: 2136 -
3a
Basco KL.Mitaku S.Skaltsounis A.-L.Ravelomanantsoa N.Tillequin F.Koch M.Le Bras J. Antimicrob. Agents Chemother. 1994, 38: 1169 -
3b
Winter RW.Kelly JX.Smilkstein MJ.Dodean R.Bagby GC.Rathbun RK.Levin JI.Hinrichs D.Riscoe MK. Exp. Parasitol. 2006, 114: 47 -
3c
Kelly JX.Smilkstein MJ.Cooper RA.Lane KD.Johnson RA.Janowsky A.Dodean RA.Hinrichs DJ.Winter R.Riscoe M. Antimicrob. Agents Chemother. 2007, 51: 4133 - 4
Demeunynck M.Charmantray F.Martelli A. Curr. Pharm. Design 2001, 7: 1703 -
5a
Boumendjel A.Macalou S.Ahmed-Belkacem A.Blanc M.Di Pietro A. Bioorg. Med. Chem. 2007, 15: 2892 -
5b
Gopinath VS.Thimmaiah P.Thimmaiah KN. Bioorg. Med. Chem. 2008, 16: 474 -
5c
Bhonde M.Padgaonkar A.Deore V.Yewalkar N.Bhatia D.Rathos M.Joshi K.Vishwakarma RA.Kumar S. Bioorg. Med. Chem. Lett. 2008, 18: 3603 -
6a
Kawaii S.Tomono Y.Katase E.Ogawa K.Yano M.Takemura Y.Ju-ichi M.Ito C.Furukawa H. J. Nat. Prod. 1999, 62: 587 -
6b
Belmont P.Bosson J.Godet T.Tiano M. Anti-Cancer Agents Med. Chem. 2007, 7: 139 - 7
Zarubaev VV.Slita AV.Krivitskaya VZ.Sirotkin AK.Kovalenko AL.Chatterjee NK. Antiviral Res. 2003, 58: 131 - 8
Fujiwara M.Okamoto M.Watanabe M.Machida H.Shigeta S.Konno K.Yokota T.Baba M. Antiviral Res. 1999, 43: 179 - 9
Goodell JR.Puig-Basagoiti F.Forshey BM.Shi PY.Ferguson DM. J. Med. Chem. 2006, 49: 2127 - 10
Goodell JR.Madhok AA.Hiasa H.Ferguson DM. Bioorg. Med. Chem. 2006, 14: 5467 - 11
Tabarrini O.Manfroni G.Fravolini A.Cecchetti V.Sabatini S.De Clercq E.Rozensky J.Canard B.Dutartre H.Paeshuyse J.Neyts J. J. Med. Chem. 2006, 49: 2621 -
12a
Akanitapichat P.Lowden CT.Bastow KF. Antiviral Res. 2000, 45: 123 -
12b
Akanitapichat P.Bastow KF. Antiviral Res. 2002, 53: 113 - 13
Bastow KF. Curr. Drug Targets: Infect. Disord. 2004, 4: 323 - 14
Bernardino AMR.Castro HC.Frugulhetti ICPP.Loureiro NIV.Azevedo AR.Pinheiro LCS.Souza TML.Giongo V.Passamani F.Magalhães UO.Albuquerque MG.Cabral LM.Rodrigues CR. Bioorg. Med. Chem. 2008, 16: 313 -
15a
Lowden CT.Bastow KF. Antiviral Res. 2003, 59: 143 -
15b
Lowden CT.Bastow KF. J. Med. Chem. 2003, 46: 5015 - 16
Stankiewicz-Drogon A.Palchykovska LG.Kostina VG.Alexeeva IV.Shved AD.Boguszewska-Chachulska AM. Bioorg. Med. Chem. 2008, 16: 8846 - 17
Basco LK.Mitaku S.Skaltsounis A.-L.Ravelomanantsoa N.Tillequin F.Koch M.Les Bras J. Antimicrob. Agents Chemother. 1994, 38: 1169 - 18
Smith JA.West RW.Allen M. J. Fluoresc. 2004, 14: 151 - 19
Saito Y.Hanawa K.Bag SS.Motegi K.Saito I. Nucleic Acids Symp. Ser. 2006, 50: 181 - 20
Smilkstein M.Sriwilaijaroen N.Kelly JX.Wilairat P.Riscoe M. Antimicrob. Agents Chemother. 2004, 48: 1803 - 21
Dadabhoy A.Faulkner S.Sammes PG. J. Chem. Soc., Perkin Trans. 2 2002, 2: 348 - 22
Nikolov P.Petkova I.Köhler G.Stojanov S. J. Mol. Struct. 1998, 448: 247 - 23
Lunardi CN.Tedesco AC.Kurth TL.Brinn IM. Photochem. Photobiol. Sci. 2003, 2: 954 - 24
González-Blanco C.Velázquez MM.Costa AMB.Barreleiro P. J. Colloid Interface Sci. 1997, 189: 43 - 25
Bretonniere Y.Cann MJ.Parker D.Slater R. Org. Biomol. Chem. 2004, 2: 1624 - 26
Wang B.Bouffier L.Demeunynck M.Mailley P.Roget A.Livache T.Dumy P. Bioelectrochemistry 2004, 63: 233 - 27
Ferreira ME.de Arias AR.Yaluff G.Bilbao NV.Nakayama H.Torres S.Schinini A.Guy I.Heinzen H.Fournet A. Phytomedicine 2010, 17: 375 - 28
Mekouar K.Mouscadet J.-F.Desmaele D.Subra F.Leh H.Savouré D.Auclair C.d’Angelo J. J. Med. Chem. 1998, 41: 2846 - 29
Franck X.Fournet A.Prina E.Mahieux R.Hocquemiller R.Figadere B. Bioorg. Med. Chem. 2004, 14: 3635 - 30
Mesa VAM.Molano MPA.Seon B.Figadere B.Robledo SM.Muñoz DL.Sáez VJA. Vitae 2008, 15: 259 ; and references cited therein - 31
Delmas F.Avellaneda A.Di Giogio C.Robin M.De Clercq E.Timon-David P.Galy JJ. Eur. J. Med. Chem. 2004, 685 - 32
Nakamura S.Kozuka M.Bastow KF.Tokuda H.Nishino H.Suzuki M.Tatsuzaki J.Natschke SLM.Kuo S.-C.Lee K.-H. Bioorg. Med. Chem. 2005, 13: 4396 - 33
Nishio R.Wessely S.Sugiura M.Kobayashi S. J. Comb. Chem. 2006, 8: 459 - 34
Mai HDT.Gaslonde T.Michael S.Tillequin F.Koch M.Bongui J.-B.Elomri A.Seguin E.Pfeiffer B.Renard P.David-Cordonnier M.-H.Laine W.Bailly C.Kraus-Berthier L.Léonce S.Hickman JA.Pierré A. J. Med. Chem. 2003, 46: 3072 -
35a
Costes N.Le Deit H.Michael S.Tillequim F.Koch M.Pfeiffer B.Renard P.Léonce S.Guilbaud N.Kraus-Berthier L.Pierré A.Atassi G. J. Med. Chem. 2000, 43: 2395 -
35b
Michael S.Gaslonde T.Tillequin F. Eur. J. Med. Chem. 2004, 39: 649 -
36a
Rudas M.Nyerges M.Toke L.Pete B.Groundwater PW. Tetrahedron Lett. 1999, 40: 7003 -
36b
Zhao J.Larock RC. J. Org. Chem. 2007, 72: 583 - 37
MacNeil SL.Wilson BJ.Snieckus V. Org. Lett. 2006, 8: 1133 -
38a
Bhoga U.Mali RS.Adapa SR. Tetrahedron Lett. 2004, 45: 9483 -
38b
Venkataraman S.Barange DK.Pal M. Tetrahedron Lett. 2006, 47: 7317 ; and references cited therein - 39
Barluenga J.Mendoza A.Rodríguez F.Fañanás FJ. Chem. Eur. J. 2008, 14: 10892 - 40
Wall VM.Eisenstadt A.Ager DJ.Laneman SA. Platinum Metals Rev. 1999, 43: 138 -
43a
Plisson C.Chenault J. Heterocycles 1999, 51: 2627 -
43b
Mphalele MJ.Nwamadi MS.Mabeta P. J. Heterocycl. Chem. 2006, 43: 255 -
43c
Almeida AIS.Silva AMS.Cavaleiro JAS. Synlett 2010, 462 -
49a
Wyman GM. Chem. Rev. 1955, 55: 625 -
49b
Yamashita S. Bull. Chem. Soc. Jpn. 1961, 34: 487
References
Optimized Experimental
Procedure for the Synthesis of (
E
)-3-Iodo-2-styrylquinolin-4(1
H
)-ones 2a-c
Na2CO3 (0.064
g, 0.61 mmol) and I2 (0.15 g, 0.61 mmol) were added to
a solution of the appropriate (E)-2-styryl-quinolin-4(1H)-one 1a-c (0.40 mmol) in anhyd THF (25 mL). The
mixture was stirred, protected from the daylight (to avoid the E/Z isomerisation),
at r.t. until complete consumption of the starting material (4-5
h) and then poured into an aq sat. solution of Na2S2O3.
The solid obtained was filtered, washed with H2O and
crystallised from EtOH. (E)-3-Iodo-2-styrylquinolin-4(1H)-ones 2a-c were obtained as yellow solids (2a, 211.7 mg, 93%; 2b,
201.7 mg, 82%; 2c, 236.2 mg, 95%).
Analytical Data for ( E )-3-Iodo-2-styrylquinolin-4(1 H )-one (2a) Mp 194-197 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.39 (ddd, 1 H, J = 8.0, 6.8, 1.2 Hz, H-6), 7.43 (d, 1 H, J = 16.4 Hz, H-α), 7.45-7.57 (m, 3 H, H-3′,4′,5′), 7.55 (d, 1 H, J = 16.4 Hz, H-β), 7.70-7.76 (m, 3 H, H-7, H-2′,6′), 7.80 (d, 1 H, J = 8.4 Hz, H-8), 8.11 (dd, 1 H, J = 8.0, 1.2 Hz, H-5), 11.97 (s, 1 H, NH) ppm. ¹³C NMR (75.47 MHz, DMSO-d 6): δ = 87.5 (C-3), 118.3 (C-8), 120.8 (C-10), 124.0 (C-6), 125.5 (C-5), 126.4 (C-α), 127.4 (C-2′,6′), 129.2 (C-3′,5′), 129.7 (C-4′), 132.3 (C-7), 135.0 (C-1′), 137.1 (C-β), 139.4 (C-9), 147.6 (C-2), 173.4 (C-4) ppm. MS (ESI+): m/z (%) = 374 (100) [M + H]+, 396 (12) [M + Na]+, 769 (3) [2 M + Na]+. Anal. Calcd (%) for C17H12INO (373.19): C, 54.71; H, 3.24; N, 3.75. Found: C, 55.10; H, 3.17; N, 3.77.
44Optimized Experimental Procedure for the Heck Reaction of ( E )-3-Iodo-2-styrylquinolin-4(1 H )-one 2a-c with Styrene: Synthesis of ( E , E )-2,3-distyrylquinolin-4(1 H )-ones 4a-c Styrene (138.8 µL, 1.6 mmol) was added to a mixture of the appropriate (E)-3-iodo-2-styrylquinolin-4(1H)-one 2a-c (0.24 mmol), tetrakis(triphenylphosphine)palladium(0) (13.94 mg, 1.2 ¥ 10-² mmol), and Et3N (33.4 µl, 0.24 mmol) in MeCN (6 mL). The mixture was heated at reflux until consumption of the starting material, which was confirmed by TLC (Table [¹] ). The mixture was then poured into H2O, extracted with CHCl3, and dried over anhyd Na2SO4. The solvent was evaporated and the residue dissolved in CH2Cl2 and purified by TLC using a mixture of EtOAc-light PE (3:2) as eluent. The (E,E)-2,3-distyrylquinolin-4(1H)-ones 4a-c were obtained as yellow solids in good yields (4a, 52.2 mg, 62%; 4b, 55.0 mg, 65%; 4c, 49.3 mg, 58%).
45Analytical Data of ( E,E )-2,3-Distyrylquinolin-4(1 H )-one (4a) Mp 207-208 ˚C. ¹H NMR (500.13 MHz, DMSO-d 6): δ = 7.24 (t, 1 H, J = 7.6 Hz, H-4′′), 7.32-7.39 (m, 5 H, H-6, H-8, H-2′,6′, H-α′), 7.41 (t, 1 H, J = 7.5 Hz, H-4′), 7.48 (t, 2 H, J = 7.5 Hz, H-3′,5′), 7.52 (d, 1 H, J = 16.4 Hz, H-β), 7.56 (d, 2 H, J = 7.6 Hz, H-2′′,6′′), 7.67 (dt, 1 H, J = 8.0, 1.2 Hz, H-7), 7.70 (d, 1 H, J = 16.4 Hz, H-α), 7.78 (t, 2 H, J = 7.6 Hz, H-3′′,5′′), 7.85 (d, 1 H, J = 16.0 Hz, H-β′), 8.17 (dd, 1 H, J = 8.1, 1.2 Hz, H-5), 11.69 (br s, NH) ppm. ¹³C NMR (125.77 MHz, DMSO-d 6): δ = 115.4 (C-3), 118.6 (C-8), 121.3 (C-α), 122.4 (C-10), 123.1 (C-α′), 124.4 (C-6), 125.2 (C-5), 126.1 (C-2′′,6′′), 127.0 (C-4′′), 127.5 (C-3′′,5′′), 128.7 (C-3′,5′), 129.0 (C-2′,6′), 129.2 (C-4′), 131.0 (C-β′), 131.6 (C-7), 135.7 (C-β,1′), 136.4 (C-1′′), 138.6 (C-9), 145.5 (C-2), 175.9 (C-4). MS (ESI+): m/z (%) = 350 (100) [M + H]+. HRMS (ESI+): m/z calcd for [C25H20NO + H]+: 350.15394; found: 350.15345.
46
Optimized Experimental
Procedure for the Synthesis of 2,3-Diarylacridin-9(10
H
)-ones 5a-c
and (
E
)-2-phenyl-4-styrylfuro[3,2-
c
]quinolines
7a-c
Iodine (1.82 mg, 7.15 ¥ 10-³ mmol)
and PTSA (1.36 mg, 7.15 ¥ 10-² mmol)
were added to a solution of the appropriate (E,E)-2,3-distyrylquinolin-4(1H)-one 4a-c (7.15 ¥ 10-² mmol) in 1,2,4-trichlorobenzene (3 mL), and the
mixture was refluxed (see Table
[²]
for
reaction time). After cooling the reaction mixture was purified
by column chromatography using light PE as eluent to remove the 1,2,4-trichlorobenzene.
Then, the mixture was removed from the column using CH2Cl2 as
eluent and was purified by TLC using a mixture of EtOAc-light
PE (3:2) as eluent. Two main compounds were isolated in each case:
That with the lower R
f
value corresponded to the 2,3-diarylacridin-9(10H)-ones 5a-c which were isolated as yellow compounds
in moderate yields (5a, 9.4 mg, 38%; 5b, 8.7 mg, 35%; 5c,
9.9 mg, 40%); and that with higher R
f
value corresponded to (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines 7a-c obtained as yellow compounds also in
moderate yields (7a, 10.2 mg, 41%; 7b, 10.9 mg, 44%; 7c,
13.9 mg, 56%).
Analytical Data
of 2,3-Diphenylacridin-9(10
H
)-one (5a)
Mp 283-284 ˚C. ¹H
NMR (300.13 MHz, DMSO-d
6): δ = 7.15-7.17
(m, 2 H, H-2′,6′), 7.21-7.32 (m, 9 H,
H-3′,4′,5′, H-2′′,3′′,4′′,5′′,6′′,
H-7), 7.55 (s, 1 H, H-4), 7.58 (d, 1 H, J = 8.0
Hz, H-5), 7.77 (ddd, 1 H, J = 8.0,
7.0, 1.1 Hz, H-6), 8.20 (s, 1 H, H-1), 8.26 (dd, 1 H, J = 8.0, 1.1
Hz, H-8), 11.92 (s, 1 H, NH) ppm. ¹³C
NMR (125.77 MHz, DMSO-d
6): δ = 117.5
(C-5), 118.9 (C-4), 119.6 (C-9a), 120.7 (C-7), 121.3 (C-8a), 126.1
(C-4′), 126.6 (C-8), 127.5 (C-4′′), 127.6 (C-1),
128.1 (C-3′′,5′′), 128.2 (C-3′,5′),
129.3 (C-2′,6′), 129.6 (C-2′′,6′′),
133.5 (C-2), 133.6 (C-6), 140.1 and 140.2 (C-1′ and C-1′′),
140.4 (C-4a), 141.0 (C-4b), 145.4 (C-3), 176.5 (C-9). HRMS (ESI+): m/z calcd for [C25H18NO + H]+: 348.1383;
found: 348.1384.
Analytical Data of ( E )-2-Phenyl-4-styrylfuro[3,2- c ]quinoline (7a) Mp 154-156 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.41 (t, 1 H, J = 7.0 Hz, H-4′′), 7.48-7.55 (m, 1 H, H-4′), 7.53 (t, 1 H, J = 7.0 Hz, H-3′′,5′′), 7.61 (t, 2 H, J = 7.6 Hz, H-3′,5′), 7.70 (dd, 1 H, J = 7.7, 7.4 Hz, H-8), 7.78 (ddd, 1 H, J = 8.0, 7.7, 1.3 Hz, H-7), 7.89 (d, 1 H, J = 17.4 Hz, H-α), 7.91 (d, 2 H, J = 7.0 Hz, H-2′′,6′′), 8.08 (d, 1 H, J = 17.4 Hz, H-β), 8.11 (d, 2 H, J = 7.6 Hz, H-2′,6′), 8.15 (d, 1 H, J = 8.0 Hz, H-6), 8.25 (s, 1 H, H-3), 8.39 (dd, 1 H, J = 7.4, 1.3 Hz, H-9) ppm. ¹³C NMR (125.77 MHz, DMSO-d 6): δ = 101.6 (C-3), 115.7 (C-9a), 119.8 (C-9), 120.9 (C-3a), 124.7 (C-2′,6′), 125.4 (C-α), 126.8 (C-8), 127.6 (C-2′′,6′′), 128.9, 129.06 and 129.12 (C-3′′,4′′,5′′, C-1′, C-4′, C-7), 129.26 (C-3′,5′), 129.32 (C-6), 135.2 (C-β), 136.2 (C-1′′), 145.0 (C-5a), 150.0 (C-4), 154.9 (C-2), 155.7 (C-9b) ppm. HRMS (ESI+): m/z calcd for [C25H18NO + H]+: 348.1383; found: 348.1378.