RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259001
Towards Glucosamine Building Blocks: Regioselective One-Pot Protection and Deallylation Procedures
Publikationsverlauf
Publikationsdatum:
12. Oktober 2010 (online)

Abstract
Glucosamine building blocks have been prepared by an efficient regioselective one-pot protection approach. This synthetic route enabled the straightforward preparation of a glucosamine disaccharide in 73% yield. The system Pd(PPh3)4/TES was investigated as an alternative procedure for anomeric allyl ether deprotection.
Key words
glucosamine - regioselective protection - one-pot procedure - allyl ether deallylation - palladium catalysis
- 1
Ernst B.Magnan JL. Nat. Rev. Drug Discovery 2009, 8: 661 - 2
Meutermans W.Le GT.Becker B. ChemMedChem 2006, 1: 1164 - 3
Poletti L.Lay L. Eur. J. Org. Chem. 2003, 2999 - 4
Dwek RA. Chem. Rev. 1996, 96: 683 - 5
Herzner H.Reipen T.Schultz M.Kunz H. Chem. Rev. 2000, 100: 4495 - 6
Rai R.McAlexander I.Chang CWT. Org. Prep. Proced. Int. 2005, 37: 337 - 7
Banoud J.Boullanger P.Lafont D. Chem. Rev. 1992, 92: 1167 - 8
Hernández-Torres JM.Liew S.-T.Achkar J.Wei A. Synthesis 2002, 487 - 9
Debenham J.Rodebaugh R.Fraser-Reid B. Liebigs Ann./Recl. 1997, 791 - 10
Fridman M.Solomon D.Yogev S.Baasov T. Org. Lett. 2002, 4: 281 - 11 For a review, see:
Bongat AFG.Demchenko AV. Carbohydr. Res. 2007, 342: 374 -
12a
Wei P.Kerns RJ. Tetrahedron Lett. 2005, 46: 6901 -
12b
Yang Y.Yu B. Tetrahedron Lett. 2007, 48: 4557 -
12c
Lin S.-C.Chao C.-S.Chang C.-C.Mong K.-KT. Tetrahedron Lett. 2010, 51: 1910 - 13
Greene TW.Wuts PGM. In Protective Groups in Organic Synthesis 4th ed.: John Wiley and Sons; New Jersey: 2007. - 14 For a review, see:
Wang Y.Ye X.-S.Zhang L.-H. Org. Biomol. Chem. 2007, 5: 2189 - For reviews, see:
-
15a
Yu B.Yang Z.Cao H. Curr. Org. Chem. 2005, 9: 179 -
15b
Codée JDC.Litjens REJN.van den Bos LJ.Overkleeft HS.van der Marel GA. Chem. Soc. Rev. 2005, 34: 769 - 16
Wang C.-C.Lee J.-C.Luo S.-Y.Kulkarni SS.Huang Y.-W.Lee C.-C.Chang K.-L.Hung S.-C. Nature (London) 2007, 446: 896 - 17
Wang C.-C.Kulkarni SS.Lee J.-C.Luo S.-Y.Hung S.-C. Nat. Protoc. 2008, 3: 97 - 18
Carvalho LC.Enugala R.Corvo MC.Marques MMB.Cabrita EJ. Magn. Reson. Chem. 2010, 48: 323 -
19a
Yamada H.Harada T.Takahashi T. J. Am. Chem. Soc. 1994, 116: 7919 -
19b
Chenault HK.Castro A. Tetrahedron Lett. 1994, 35: 9145 -
19c
Ley SV.Priepke HWM. Angew. Chem., Int. Ed. Engl. 1994, 33: 2292 ; and references cited therein - 20
Zhang Z.Ollmann IR.Ye X.-S.Wischnat R.Baasov T.Wong C.-H. J. Am. Chem. Soc. 1999, 121: 734 -
21a
Wuts PGM.Greene TW. In Protective Groups in Organic Synthesis 4th ed.: John Wiley and Sons; New Jersey: 2007. p.84 -
21b
Guibe F. Tetrahedron 1997, 53: 13509 - 22
Imoto M.Yoshimura H.Shimamoto T.Sakaguchi N.Kusumoto S.Shiba T. Bull. Chem. Soc. Jpn. 1987, 60: 2205 -
23a
Kusumoto S.Yoshimura H.Imoto M.Shimamoto T.Shiba T. Tetrahedron Lett. 1985, 26: 909 -
23b
Oikawa M.Wada A.Yoshizaki H.Fukase K.Kusumoto S. Bull. Chem. Soc. Jpn. 1997, 70: 1435 - 24
Mong TK.-K.Huang C.-Y.Wong C.-H. J. Org. Chem. 2003, 68: 2135 -
26a
Tanaka K.Fukase K. Synlett 2007, 164 -
26b
Debenham SD.Toone EJ. Tetrahedron: Asymmetry 2000, 11: 385 - 28 [(1,5-Cyclooctadiene)bis(methyldiphenylphosphine)- iridium(I)
hexafluorophosphate] according to:
Inamura S.Fukase K.Kusumoto S. Tetrahedron Lett. 2001, 42: 7613 -
29a
Nelson GS.Bungard CJ.Wang K. J. Am. Chem. Soc. 2003, 125: 13000 -
29b
Higashino T.Sakaguchi S.Ishii Y. Org. Lett. 2000, 2: 4193 -
30a
Gent PA.Gigg R. J. Chem. Soc., Chem. Commun. 1974, 277 -
30b
Gigg R. J. Chem. Soc., Perkin Trans. 1 1980, 738 -
30c
Boullanger P.Chateland P.Descotes G.Kloosterman M.Boom VHJ. J. Carbohydr. Chem. 1986, 5: 541 -
30d
Nishiguchi T.Tachi K.Fukuzumi K. J. Org. Chem. 1975, 40: 237 - 31
Mereyala HB.Guntha S. Tetrahedron Lett. 1993, 34: 6929 - 32
Carless HA.Haywood DJ. J. Chem. Soc., Chem. Commun. 1980, 980 - 33
Lee J.Cha JK. Tetrahedron Lett. 1996, 37: 3663 - 34
Honda M.Morita H.Nagagura I. J. Org. Chem. 1997, 62: 8932 - 35
Ito H.Taguchi T.Hanzawa Y. J. Org. Chem. 1993, 58: 774 - 36
Rao GV.Reddy DS.Mohan GH.Iyengar DS. Synth. Commun. 2000, 30: 3565 - 37
Bailey WF.England MD.Mealy MJ.Thongsornkleeb C.Teng L. Org. Lett. 2000, 4: 489 - 38
Diaz RR.Melagatejo CR.Espinosa MTPL.Cubro I. J. Org. Chem. 1994, 59: 7928 - 39
Wang P.Haldar P.Wang Y.Hu H. J. Org. Chem. 2007, 72: 5870 - 40
Masahiro S.Yasufumi O. J. Org. Chem. 1990, 55: 870 - 41
Mirza-Aghayan M.Boukherroub R.Bolourtchian M. Appl. Organomet. Chem. 2006, 20: 214
References and Notes
All steps involved were previously investigated separately in order to obtain the authentic intermediates samples, to support the TLC monitoring.
27
Selected Spectroscopic
Data
Compound (7): white
solid; mp 63-65 ˚C; [α]D
²5 +58.8
(c 0.5, CHCl3). ¹H
NMR (400 MHz, CDCl3, 23 ˚C): δ = 7.49-7.26
(m, 10 H, ArH), 5.90 (m, 1 H, CH2CH=CH2), 5.23 (d,
1 H, J = 17.4
Hz, CH2CH=CH
2),
5.24 (d, 1 H, J = 10.1
Hz, CH2CH=CH
2),
5.16 (d, 1 H, J = 9.7
Hz, NH), 4.80-4.70 (m, 3 H, H-1, CH2CCl3),
4.67-4.54 (m, 4 H, CH
2Ph),
4.17 (m, 1 H, CH
2CH=CH2),
4.01-3.98 (m, 2 H, H-2, CH
2CH=CH2), 3.70-3.60
(m, 5 H, H-4, H-5,
H-6a, H-6b,
H-3), 2.66 (br s, 1 H, OH). ¹³C NMR
(100 MHz, CDCl3, 23 ˚C): δ = 54.4,
68.2, 69.8, 70.2, 71.9, 73.6, 74.4, 74.5, 80.1, 95.3, 96.8, 117.9, 127.6,
127.7, 128.4, 128.5, 133.3, 137.7, 138.2, 154.1. HRMS-FAB: m/z calcd for C26H30NCl3O7:
574.1166; found: 574.1152.
Compound (8):
white solid. ¹H NMR (400 MHz, CDCl3,
23 ˚C): δ = 7.40-7.26 (m, 12
H, ArH), 7.05 (d, 2 H, J = 7.5
Hz, ArH), 5.11 (br s, 1 H, NH), 4.90
(d, 1 H, J = 9.7
Hz, H-1), 4.76 (s, 4 H, 2 × CH
2Ph), 4.57 (dd, 2 H, J = 11.8,
18.2 Hz, CH2CCl3), 3.80-3.75 (m,
3 H, 3-H, 2 × H-6), 3.67 (t, 1 H, J = 9.0 Hz,
H-4), 3.52-3.50 (m, 1 H, H-5), 3.35 (dd, 1 H, J = 9.0 Hz,
17.6 Hz, H-2), 2.78 (br s, 1 H, OH), 2.30 (s, 3 H, SPhCH
3).
Compound (10): colorless solid; mp 176-179 ˚C; [α]D
²5 +43.3
(c 0.12, CHCl3). ¹H
NMR (400 MHz, CDCl3, 23 ˚C): δ = 7.49-7.26
(m, 20 H, ArH), 5.89-5.80 (m,
1 H, CH2CH=CH2),
5.42 (s, 1 H, CHPh), 5.28-5.20
(m, 2 H, CH2CH=CH
2),
4.95-4.55 (m, 10 H, H-1, 2 × CH
2Ph, CH
2Ph,
2 × CH2CCl3), 4.29
(d, 1 H, J = 12.1
Hz, CH
2Ph), 4.13-3.95
(m, 5 H, CH
2CH=CH2,
H-2, H-1′, H-3′), 3.76-3.44 (m, 6 H,
H-6′, H-2′, H-4′, H-3, H-5, H-6), 3.20-3.11
(m, 3 H, H-4, H-5′, H-6′). ¹³C
NMR (100 MHz, CDCl3, 23 ˚C): δ = 54.6,
57.4, 65.4, 66.8, 68.4, 68.5, 70.2, 73.6, 73.9, 74.5, 76.5, 77.7,
78.0, 82.1, 95.4, 95.5, 96.7, 100.9, 101.1, 118.2, 126.0, 127.2,
127.8, 128.2, 128.3, 128.4, 129.0, 129.8, 133.2, 137.2, 137.7, 138.2,
138.9, 154.0, 154.1. HRMS (ESI-TOF): m/z calcd
for C49H52Cl6N2O13Na:
1109.1492; found: 1109.1493.
General Procedure
for the Isomerization
To a solution of compound 5 or 11 (0.14
mmol) and Pd(PPh3)4 (8 mg, 5 mol%)
in dry CH2Cl2 (3.2 mL) was added TES (27 µL,
0.17 mmol). After stirring for 24 h at r.t., the reaction mixture
was quenched with sat. aq solution of NaHCO3 (1 mL) and
extracted with CH2Cl2. The organic layer was washed
with brine (1 mL), dried over Na2SO4, and concentrated
under reduced pressure.
Selected Spectroscopic
Data
Compound (13): ¹H
NMR (400 MHz, CDCl3, 23 ˚C): δ = 7.52-7.28
(m, 10 H, ArH), 6.01 (d, 1 H, J = 4.4 Hz, CH=CHCH3), 5.59 (s,
1 H, CHPh), 5.25 (d, 1 H, J = 9.3 Hz, NH),
5.04 (d, 1 H, J = 3.6
Hz, H-1), 4.95-4.90 (m, 1 H, CH
2Ph),
4.67-4.59 (m, 2 H, CH
2Ph,
CH=CHCH3), 4.34-4.25
(m, 2 H, H-5, H-6), 3.84-3.74
(m, 4 H, H-3, H-2, H-4, H-6), 1.91 (s, 3 H, COCH3), 1.54
(d, J = 6.9
Hz, 3 H, CH=CHCH
3). ¹³C
NMR (100 MHz, CDCl3, 23 ˚C): δ = 10.5, 23.2,
52.4, 63.4, 69.7, 68.8, 74.0, 75.4, 82.7, 98.1, 101.2, 104.8, 125.9,
127.6, 127.8, 128.1, 128.2, 128.4, 128.9, 137.2, 138.3, 141.5, 169.9.
HRMS-FAB: m/z calcd
for C25H29NO6Na: 462.1887; found:
462.1658.