Subscribe to RSS
DOI: 10.1055/s-0030-1259015
A Concise Synthesis of Bengamide E and Analogues via E-Selective Cross-Metathesis Olefination
Publication History
Publication Date:
03 November 2010 (online)
Abstract
A modular, eight-step synthesis of bengamide E and six analogues from a common chiral pool has been developed. The key step in this approach is a cross-metathesis coupling of various commercial terminal olefins and a common alkene bearing the required stereogenic centers of bengamides lateral chain, which was easily derived from α-d-glucoheptonic-γ-lactone. Complete E-selectivity, and up to 92% yield were achieved for this crucial cross-metathesis step.
Key words
bengamide - analogues - cross-metathesis - stereoselective olefination - isomerization
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Quiñoà E.Adamczeski M.Crews P.Bakus G.
J. Org. Chem. 1986, 51: 4494 -
1b
Adamczeski M.Quiñoà E.Crews P. J. Am. Chem. Soc. 1989, 111: 647 -
1c
Adamczeski M.Quiñoà E.Crews P. J. Org. Chem. 1990, 55: 240 -
1d
D’Auria MV.Giannini C.Minale L.Zampella A.Debitus C.Frostin M. J. Nat. Prod. 1997, 60: 814 - 2
Thale Z.Kinder FR.Bair KW.Bontempo J.Czuchta AM.Versace RW.Phillips PE.Sanders ML.Wattanasin S.Crews P. J. Org. Chem. 2001, 66: 1733 -
3a For
recent review (up to early 2001), see:
Kinder FR. Org. Prep. Proced. Int. 2002, 34: 559 -
3b
Banwell MG.McRae KJ. J. Org. Chem. 2001, 66: 6768 -
3c
Liu W.Szewczyk JM.Waykole L.Repic O.Blacklock TJ. Tetrahedron Lett. 2002, 43: 1373 -
3d
Boeckman RK.Clark TJ.Shook BC. Org. Lett. 2002, 4: 2109 -
3e
Sarabia F.Sánchez-Ruiz A. J. Org. Chem. 2005, 70: 9514 ; and references cited therein -
3f
Liu G.Ma Y.-M.Tai W.-Y.Xie C.-M.Li Y.-L.li J.Nan F.-J. ChemMedChem 2008, 3: 74 - 4
Kinder FR.Versace RW.Bair KW.Bontempo JM.Cesarz D.Chen S.Crews P.Czuchta AM.Jagoe CT.Mou Y.Nemzek R.Phillips PE.Tran LD.Wang R.Weltchek S.Zabludoff S. J. Med. Chem. 2001, 44: 3692 - 5
Towbin H.Bair KW.DeCaprio JA.Eck MJ.Kim S.Kinder FK.Morollo A.Mueller DR.Schindler P.Song HK.van Oostrum J.Versace RW.Voshol H.Wood J.Zabludoff S.Phillips PE. J. Biol. Chem. 2003, 278: 52964 - For recent reviews, see:
-
6a
Bernier SG.Taghizadeh N.Thompson CD.Westlin WF.Hannig G. J. Cell. Biochem. 2005, 95: 1191 -
6b
Selvakumar P.Lakshmikuttyamma A.Dimmock J.Sharma RK. Biochim. Biophys. 2006, 1765: 148 -
6c
Frottin F.Martinez A.Peynot P.Mitra S.Holz RC.Giglione C.Meinel T. Mol. Cell. Proteomics 2006, 5: 2336 -
6d
Wiltschi B.Merkel L.Budisa N. ChemBioChem 2009, 10: 217 - 7
Hu X.Dang Y.Tenney K.Crews P.Tsai CW.Sixt KM.Cole PA.Liu JO. Chem. Biol. 2007, 14: 764 -
8a
Levraud C.Calvet-Vitale S.Bertho G.Dhimane H. Eur. J. Org. Chem. 2008, 1901 -
8b
David M.Dhimane H. Synlett 2004, 1029 - 9
Xu DD.Waykole L.Calienni JV.Ciszewski L.Lee GT.Liu W.Szewczyk J.Vargas K.Prasad K.Repic O.Blacklock TJ. Org. Process Res. Dev. 2003, 7: 856 -
12a
Grank G.Eastwood FW. Aust. J. Chem. 1964, 17: 1392 -
12b
Ando M.Ohhara H.Takase K. Chem. Lett. 1986, 879 - 14
Chatterjee AK.Choi R.-L.Sanders DP.Grubbs RH. J. Am. Chem. Soc. 2003, 125: 11360 -
16a
Maynard HD.Grubbs RH. Tetrahedron Lett. 1999, 40: 4137 -
16b
Edwards SD.Lewis T.Raylor RJK. Tetrahedron Lett. 1999, 40: 4267 -
16c
Bourgeois D.Pancrazi A.Ricard L.Prunet J. Angew. Chem. Int. Ed. 2000, 39: 725 - 17
Fürstner A.Thiel OR.Ackermann L.Schanz H.-J.Nolan SP. J. Org. Chem. 2000, 65: 2204 - For review, see:
-
18a
Schmidt B. Eur. J. Org. Chem. 2004, 1865 -
18b
Alcaide B.Almendros P. Chem. Eur. J. 2003, 9: 1259 -
19a
Cadot C.Dalko PI.Cossy J. Tetrahedron Lett. 2002, 43: 1839 -
19b
Maishal TK.Sinha-Mahapatra DK.Paranjape K.Sarkar A. Tetrahedron Lett. 2002, 43: 2263 - 20
Courchay FC.Sworen JC.Ghiviriga I.Aboud KA.Wagener KB. Organometallics 2006, 25: 6074 ; and references cited therein - 21
Hong SH.Sanders DP.Lee CW.Grubbs RH. J. Am. Chem. Soc. 2005, 127: 17160 - 23
Boyle WJ.Sifniades S.van Peppen JF. J. Org. Chem. 1979, 44: 4841 - 24
Liu W.Xu DD.Repic O.Blacklock TJ. Tetrahedron Lett. 2001, 42: 2439
References and Notes
Aldehyde 3 is highly hygroscopic and sensitive to both acid and base; it should be freshly prepared and dehydrated by azeotropic evaporations with i-PrOAc prior to its use.
11Our initial attempt to carry out the Julia-Kocienski methylenation of aldehyde 3 led to the required olefin 4 in poor yields (<10%).
13Use of PTSA as catalyst in toluene at 80 ˚C gave similar yields; however, in large-scale batches, we observed transprotection of the acetonide, thus leading to the corresponding bisorthoester. Orthoester 6 was found to be stable at r.t. in the solid state; however, it undergoes gradual hydrolysis (into methyl formiate and diol 2) on standing in CDCl3.
15The CM adducts 5 could not be quantitatively recovered from the reaction mixtures; aromatic compounds 5e-g could not be fully separated from substrate 4, while the aliphatic ones 5a-d were always contaminated with the substrate isomer 4′.
22No CM reaction was observed with: H2C=CHTMS, H2C=CHO-t-Bu, H2C=CHOAc, H2C=CHSO2Me, N-vinylimidazole.