RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259057
Synthesis of 1-Stannylated and 1-Iodinated 1-Chloroalkenes as Versatile Synthetic Intermediates
Publikationsverlauf
Publikationsdatum:
19. November 2010 (online)

Abstract
An efficient and convenient synthesis of 1-stannylated and iodinated 1-chloroalkenes is described based on MoBI3-catalyzed hydrostannations of 1-chloroalkynes, followed by a tin-iodine exchange. The 1-chloro-1-iodoalkenes are suitable substrates for further modification, for example, via cross-coupling reactions.
Key words
chloroalkynes - cross-coupling - hydrostannation - molybdenum - vinyl halides
-
1a
Leusink AJ.Budding HA.Drenth W. J. Organomet. Chem. 1967, 9: 295 -
1b
Ichinose Y.Oda H.Oshima K.Utimoto K. Bull. Chem. Soc. Jpn. 1987, 60: 3468 -
1c
Nozaki K.Oshima K.Utimoto K. J. Am. Chem. Soc. 1987, 109: 2547 -
1d
Zhang HX.Guibe F.Balavoine G. Tetrahedron Lett. 1988, 29: 619 -
1e
Zhang HX.Guibé F.Balavoine G. J. Org. Chem. 1990, 55: 1857 -
1f
Baldwin JE.Adlington RM.Ramcharitar SH. J. Chem. Soc., Chem. Commun. 1991, 940 -
1g
Davies AG. In Comprehensive Organometallic Chemistry II Vol. 2: Pergamon; Oxford: 1995. p.217ff -
1h
Davies AG. Organotin Chemistry VCH; Weinheim: 1997. - For reviews, see:
-
2a
Smith ND.Mancuso J.Lautens M. Chem. Rev. 2000, 100: 3257 -
2b
Trost BM.Ball ZT. Synthesis 2005, 853 ; and references cited therein -
3a
Hibino J.Matsubara S.Morizawa Y.Oshima K. Tetrahedron Lett. 1984, 25: 2151 -
3b
Barbero A.Cuadradro P.Fleming I.Gonzalez AM.Pulido FJ. J. Chem. Soc., Chem. Commun. 1992, 351 -
3c
Reginato G.Mordini A.Caracciolo M. J. Org. Chem. 1997, 62: 6187 -
4a
Asao N.Liu JX.Sudoh T.Yamamoto Y. J. Chem. Soc., Chem. Commun. 1995, 2405 -
4b
Asao N.Liu JX.Sudoh T.Yamamoto Y. J. Org. Chem. 1996, 61: 4568 - 5
Mirzayans PM.Pouwer RH.Williams CM. Org. Lett. 2008, 10: 3861 -
6a
Dimopoulos P.Athlan A.Manaviazar S.George J.Walters M.Lazarides L.Aliev AE.Hale KJ. Org. Lett. 2005, 7: 5369 -
6b
Dimopoulos P.Athlan A.Manaviazar S.Hale KJ. Org. Lett. 2005, 7: 5373 -
6c
Dimopoulos P.George J.Tocher DA.Manaviazar S.Hale KJ. Org. Lett. 2005, 7: 5377 - 7
Miura K.Wang D.Matsumoto Y.Hosomi A. Org. Lett. 2005, 7: 503 -
8a
Kazmaier U.Schauß D.Pohlman M. Org. Lett. 1999, 1: 1017 -
8b
Kazmaier U.Pohlman M.Schauß D. Eur. J. Org. Chem. 2000, 2761 -
8c
Kazmaier U.Schauß D.Pohlman M.Raddatz S. Synthesis 2000, 914 -
8d
Braune S.Kazmaier U. J. Organomet. Chem. 2002, 641: 26 -
9a
Braune S.Pohlman M.Kazmaier U. J. Org. Chem. 2004, 69: 468 -
9b
Kazmaier U.Wesquet A. Synlett 2005, 1271 -
9c
Wesquet AO.Dörrenbächer S.Kazmaier U. Synlett 2006, 1105 -
9d
Kazmaier U.Dörrenbächer S.Wesquet A.Lucas S.Kummeter M. Synthesis 2007, 320 -
9e
Jena N.Kazmaier U. Eur. J. Org. Chem. 2008, 3852 -
10a
Kazmaier U.Schauß D.Raddatz S.Pohlman M. Chem. Eur. J. 2001, 7: 456 -
10b
Dörrenbächer S.Kazmaier U.Ruf S. Synlett 2006, 547 -
10c
Deska J.Kazmaier U. Angew. Chem. Int. Ed. 2007, 46: 4570 ; Angew. Chem. 2007, 119, 4654 -
10d
Deska J.Kazmaier U. Chem. Eur. J. 2007, 13: 6204 -
10e
Bukovec C.Kazmaier U. Org. Lett. 2009, 11: 3518 - See, for example:
-
11a
Negishi E. Organometallics in Organic Synthesis J. Wiley; New York: 1980. p.30 -
11b
Posner GH. An Introduction to Synthesis Using Organocopper Reagents R. E. Krieger; Malabor: 1988. p.72 -
11c
Hanack M. Angew. Chem., Int. Ed Engl. 1978, 17: 333 -
11d
Negishi E.Valente LF.Kobayashi M. J. Am. Chem. Soc. 1980, 102: 3298 -
11e
Kropp PJ. Acc. Chem. Res. 1984, 17: 131 - 12
Kropp PJ.McNeely SA.Davis RD. J. Am. Chem. Soc. 1983, 105: 6907 -
13a
Negishi E.Okukado N.Lovich LF.Luo F. J. Org. Chem. 1984, 49: 2629 -
13b
Tellier F.Sauvetre R.Normant J. Tetrahedron Lett. 1986, 27: 3147 - 14
Alami M.Crousse B.Linstrumelle G. Tetrahedron Lett. 1995, 36: 3687 - 15
Andersson K. Chem. Scr. 1972, 2: 117 - 16
Delavarenne SY.Viehe HG. In The Chemistry of Acetylenes Marcel Dekker; New York: 1969. Chap. 10. p.699 - 17
Shainyan BA.Mirskowa AN. Zh. Org. Khim. 1983, 19: 1146 - 18
Suzuki H.Aihara M.Yamamoto H.Tamamoto Y.Ogawa T. Synthesis 1988, 237 - 19
Barleunga J.Rodríguez MA.Campos PJ. Tetrahedron Lett. 1990, 31: 2751 - 20
Murray RE. Synth. Commun. 1980, 10: 345 -
22a
Wesquet AO.Kazmaier U. Adv. Synth. Catal. 2009, 1395 -
22b
Lin H.Kazmaier U. Eur. J. Org. Chem. 2009, 1221 - 28
Mitani M.Kobayashi Y.Koyama K. J. Chem. Soc., Perkin Trans. 1 1995, 653
References and Notes
The slight excess of Bu3SnH was used to allow complete conversion, because during transition-metal-catalyzed hydrostannations in general a certain amount of the tin hydride decomposes towards Bu3SnSnBu3.
23
General Procedure
for MoBI
3
-Catalyzed Hydrostannations
In
an oven-dried Schlenk tube the corresponding chloroalkyne (1 mmol)
and Mo(CO)3(CNt-Bu)3 (MoBI3, 12.9
mg, 30 µmol) were dissolved together with hydro-quinone
(10 mg, 91 µmol) in dry THF (2 mL) under argon. The solution
was heated to 60 ˚C for 10 min before Bu3SnH (435
mg, 1.5 mmol) was added. The reaction mixture was stirred for 16-24
h. After completion, the reaction mixture was cooled to r.t., and
the solvent was evaporated in vacuo. The crude product was purified
by flash chromatography on silica gel (neutralized with Et3N)
using pentane or hexane as an eluent.
Tributyl(1-chloro-1-pentenyl)stannane
(2a)
Colorless oil. ¹H NMR (400
MHz, CDCl3): δ = 0.92
(t, J = 7.0
Hz, 12 H, CH3), 1.01-1.05 (m, 6 H, CH2),
1.28-1.37 (m, 8 H, CH2), 1.52-1.58
(m, 6 H, CH2), 2.30 (dt, J = 6.9
Hz, J
Sn-H = 14.2
Hz, 2 H, CHCH
2), 5.79 (t, J = 6.9 Hz, J
Sn-H = 32.4
Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 10.3
(J
Sn-C = 342.6
Hz), 13.6, 13.7, 21.8, 27.2 (J
Sn-C = 60.2
Hz), 28.7 (J
Sn-C = 22.7
Hz), 30.8, 136.8, 142.0 ppm. ¹¹9Sn
NMR (150 MHz, CDCl3): δ = -31.9
ppm. HRMS:
m/z calcd
for C13H26ClSn [M - C4H9]+:
337.0740; found: 337.0729.
Tributyl(1-chloro-1-octenyl)stannane
(2d)
Colorless oil. ¹H NMR (400
MHz, CDCl3): δ = 0.92
(t, J = 7.2
Hz, 12 H, CH3), 1.01-1.05 (m, 6 H, CH2),
1.31-1.38 (m, 14 H, CH2), 1.50-1.56
(m, 6 H, CH2), 2.32 (dt, J = 6.9 Hz, J
Sn-H = 14.5
Hz, 2 H, CHCH
2), 5.80 (t, J = 6.4 Hz,
J
Sn-H = 32.1
Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 10.3
(J
Sn-C = 341.8
Hz), 13.6, 14.1, 22.6, 27.2, (J
Sn-C = 57.2
Hz), 28.6, 28.8, 28.9, 31.7, 136.6, 142.3 ppm. ¹¹9Sn
NMR (150 MHz, CDCl3): δ = -32.0
ppm. HRMS:
m/z calcd
for C16H32ClSn [M - C4H9]+:
365.1053; found: 365.1033.
(
E
)-Tributyl(1-chloro-3-methoxypropenyl)stannane [(
E
)-2g]
Colorless
oil. ¹H NMR (400 MHz, CDCl3): δ = 0.92
(t, J = 7.3
Hz, 9 H, CH3), 1.06-1.11 (m, 6 H, CH2),
1.31-1.40 (m, 6 H, CH2), 1.52-1.60
(m, 6 H, CH2), 3.38 (s, 3 H, OCH3), 4.23 (d, J = 5.3 Hz, J
Sn-H = 14.5
Hz, 2 H, CHCH
2), 5.27 (t, J = 5.3 Hz, J
Sn-H = 31.1
Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 10.4,
13.6, 27.2, 28.7, 58.1, 69.4, 138.6, 142.2 ppm. ¹¹9Sn
NMR (150 MHz, CDCl3): δ = -28.3 ppm. HRMS: m/z calcd for C12H24OClSn [M - C4H9]+:
339.0533; found: 339.0525.
(
Z
)-Tributyl(1-chloro-3-methoxypropenyl)stannane [(
Z
)-2g]
Colorless
oil. ¹H NMR (400 MHz, CDCl3): δ = 0.93
(t, J = 7.1
Hz, 9 H, CH3), 1.06-1.11 (m, 6 H, CH2),
1.31-1.40 (m, 6 H, CH2), 1.52-1.60
(m, 6 H, CH2), 3.34 (s, 3 H, OCH3), 3.87 (d, J = 6.5 Hz, J
Sn-H = 14.5
Hz, 2 H, CHCH
2), 6.64 (t, J = 6.5 Hz, J
Sn-H = 75.3
Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 11.6
(J
Sn-C = 348.0
Hz), 13.6, 27.2
(J
Sn-C = 60.8
Hz), 28.7 (J
Sn-C = 19.8
Hz), 57.9, 71.6
(J
Sn-C = 14.7
Hz), 139.7, 142.1 ppm. ¹¹9Sn NMR (150
MHz, CDCl3): δ = -32.21 ppm. HRMS: m/z calcd for C12H24OClSn [M - C4H9]+:
339.0533; found: 339.0525.
(
E
)-Tributyl(1-methoxymethylvinyl)stannane
(11g)
Colorless oil. ¹H NMR (400
MHz, CDCl3): δ = 0.89-0.95 (m,
15 H, CH2 and CH3), 1.31-1.36 (m,
6 H, CH2), 1.48-1.56 (m, 6 H, CH2),
3.32 (s, 3 H, OCH3), 4.05 (d, J = 1.5
Hz, J
Sn-H = 34.6
Hz, 2 H, CH2), 5.28 (dt, J = 2.7,
1.7 Hz,
J
Sn-H = 62.2
Hz, 1 H, CH), 5.88 (dt, J = 2.7,
1.7 Hz,
J
Sn-H = 131.0
Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 9.5,
13.7, 27.3, 29.1, 57.7, 79.7, 124.6, 153.0 ppm. ¹¹9Sn
NMR (150 MHz, CDCl3): δ = -45.4 ppm. HRMS: m/z calcd for C12H25OSn [M - C4H9]+ 305.0922; found:
305.0920.
Representative
Procedure for the Synthesis of 1-Chloro-1-iodoalkenes
A solution of iodine (280 mg, 1.1 mmol)
in CH2Cl2 (8.0 mL) was added dropwise (up
to 1 h) to the solution of tributyl(1-chlorohex-1-enyl)stannane
(2b, 408 mg, 1 mmol) in CH2Cl2 (7.0
mL) at 0 ˚C. After addition of the iodine solution the cooling
bath was removed, and the reaction mixture was stirred at r.t. for
1 h, before the reaction mixture was stirred with sat. KF solution
(15 mL) for 2 h. The organic layer was separated, and the aqueous
layer was extracted with CH2Cl2 (10 mL). The
combined organic layers were dried over Na2SO4.
After evaporation of the solvent, the crude product was purified
by flash chromatography using hexane as eluent to yield 1-chloro-1-iodo-1-hexene
(4b) as colorless oil.
1-Chloro-1-iodo-1-hexene (4b)
¹H
NMR (400 MHz, CDCl3): δ = 0.93
(t, J = 7.8
Hz, 3 H, CH3), 1.34-1.42 (m, 4 H, CH2),
2.18 (q, J = 7.5
Hz, 2 H, CH2), 6.45 (t, J = 7.5
Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 13.8,
22.1, 30.0, 31.4, 66.3, 144.4 ppm. HRMS (CI): m/z calcd
for C6H10ClI [M]+:
243.9516; found: 243.9556.
Representative
Procedure for Sonogashira Couplings
In an oven-dried
Schlenk tube CuI (17.0 mg, 10 mol%) was added to a solution
of Pd(PPh3)4 (44.0 mg, 5 mol%) in benzene
(2 mL) under Ar. To this mixture 1-chloro-1-iodo-1-heptene (4c, 223 mg, 0.87 mmol) and piperidine (178 µL, 1.74
mmol) were added before it was warmed up to 60 ˚C. Phenyl
acetylene was added dropwise (over 1 h), and the reaction mixture
was heated at this temperature for addi-tional 4 h. After the reaction
was complete (TLC), the mixture was cooled to r.t. and diluted with
Et2O (20 mL). The organic layer was washed with sat.
NH4Cl solution and H2O (20 mL each). The organic
layer was separated, dried over Na2SO4 and
evaporated to dryness. The crude product obtained was purified by
flash chromatography using hexane as eluent.
(
Z
)-1-Phenyl-3-chloro-3-nonen-1-yne (6c)
¹H
NMR (400 MHz, CDCl3): δ = 0.93
(t, J = 7.3
Hz, 3 H, CH3), 1.34-1.39 (m, 4 H, CH2),
1.47-1.51 (m, 2 H, CH2), 2.33 (q, J = 7.5 Hz,
2 H, CH2), 6.22 (t, J = 7.5
Hz, 1 H, CH), 7.33-7.37 (m, 3 H, ArH), 7.47-7.50
(m, 2 H, ArH) ppm.
¹³C NMR
(100 MHz, CDCl3): δ = 13.9,
22.4, 27.8, 29.3, 31.4, 86.5, 88.2, 113.7, 122.2, 128.3, 128.8,
131.7, 137.9 ppm. ¹¹9Sn NMR (150 MHz,
CDCl3): δ = -28.96 ppm. HRMS: m/z calcd for C15H17 [M - Cl]+:
197.1325; found: 197.1296.
Representative
Procedure for Stille Couplings
In an oven-dried Schlenk
tube PdCl2(PhCN)2 (3.8 mg, 5 mol%)
was dissolved in DMF (2.0 mL) under Ar. To this solution 1-chloro-1-iodo-1-octene
(4d, 54.0 mg, 0.2 mmol) was added, followed
by the dropwise addition of vinyl tributyltin (70 µL, 0.22
mmol) at r.t. After 30 min the reaction was complete (TLC), and
the reaction mixture was diluted with Et2O, washed with
sat. NH4Cl solution and H2O. The organic layer
was separated and dried over Na2SO4 and the
crude product obtained after evaporation of the solvent was purified
by silica gel column chromatography using hexane as eluent.
(
Z
)-3-Chloro-1,3-decadiene (7d)
²8
¹H NMR (400
MHz, CDCl3): δ = 0.91
(t, J = 6.3
Hz, 3 H, CH3), 1.29-1.37 (m, 6 H, CH2),
1.40-1.46 (m, 2 H, CH2), 2.33 (q, J = 7.3 Hz,
2 H, CH2), 5.16 (d, J = 11.8
Hz, 1 H, CH), 5.57 (d, J = 15.8
Hz, 1 H, CH), 5.79 (t, J = 7.3
Hz, 1 H, CH), 6.39 (dd, J = 11.8,
15.8 Hz, 1 H, CH) ppm. ¹³C NMR (100
MHz, CDCl3): δ = 14.0,
22.6, 28.4, 28.8, 28.9, 31.6, 115.0, 131.9, 132.4, 134.6 ppm.
Representative
Procedure for Suzuki Couplings
A solution of phenylboronic
acid (26.4 mg, 0.22 mmol) in EtOH (0.2 mL) was added to a Schlenk
tube containing a solution of Pd(PPh3)4 (11.5
mg, 5 mol%) and 1-chloro-1-iodo-1-octene (4d,
54.0 mg, 0.2 mmol) in DME (1.0 mL) under argon. A solution of Na2CO3 (64
mg, 0.6 mmol) in degassed H2O (0.5 mL) was added to the
reaction mixture, and the mixture was heated under reflux for 24
h. The reaction mixture was then cooled to r.t., diluted with H2O
(10 mL) and Et2O (10 mL). The layers were separated,
and the aqueous layer was extracted with Et2O (10 mL).
The combined organic layers were washed with H2O and
dried over anhyd Na2SO4, filtered, and concentrated
under reduced pressure. The crude product obtained was purified by
flash chromatography on silica gel using hexanes to yield 19.0 mg
(45%) of monoarylated product 8d and
9.6 mg (16%) of diarylated product 9d.
(
Z
)-1-Chloro-1-phenyl-1-octene (8d)
¹H
NMR (400 MHz, CDCl3): δ = 0.92
(t, J = 7.0
Hz, 3 H, CH3), 1.29-1.42 (m, 6 H, CH2),
1.50-1.56 (m, 2 H, CH2), 2.41 (q, J = 7.1 Hz,
2 H, CH2), 6.16 (t, J = 6.6
Hz, 1 H, CH), 7.31-7.38 (m, 3 H, ArH), 7.57-7.60
(m, 2 H, ArH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 14.0,
22.6, 28.5, 29.0, 29.6, 31.7, 126.3, 128.1, 128.2, 128.8, 132.6,
138.4 ppm. HRMS: m/z calcd for
C14H19 [M - Cl]+:
187.1481; found: 187.1482.
1,1-Diphenyl-1-octene
(9d)
¹H NMR (400 MHz, CDCl3): δ = 0.89
(t, J = 6.8
Hz, 3 H, CH3), 1.23-1.44 (m, 6 H, CH2),
1.46-1.48 (m, 2 H, CH2), 2.14 (q, J = 7.3 Hz,
2 H, CH2), 6.11 (t, J = 7.5
Hz, 1 H, CH), 7.19-7.41 (m, 6 H, ArH), 7.45-7.49
(m, 2 H, ArH), 7.61-7.64 (m, 2 H, ArH) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 14.0,
22.6, 28.9, 29.7, 29.9, 31.7, 126.7, 126.8, 127.2, 127.3, 128.0,
128.1, 128.8, 129.9, 130.4, 140.3, 141.2, 141.4, 142.9 ppm. HRMS: m/z calcd for C20H24 [M]+: 264.1873;
found: 264.1843.