Subscribe to RSS
DOI: 10.1055/s-0030-1259064
Synthesis of Tri- and Diaryloxybenzenes by Rhodium-Catalyzed Complete Intermolecular [2+2+2] Cycloaddition of Aryl Ethynyl Ethers
Publication History
Publication Date:
24 November 2010 (online)

Abstract
We have established that a cationic rhodium(I)-H8-BINAP complex catalyzes the complete intermolecular homo-[2+2+2] cycloaddition of aryl ethynyl ethers and cross-[2+2+2] cycloaddition of aryl ethynyl ethers with electron-deficient monoalkynes, leading to tri- and diaryloxybenzenes, respectively, at room temperature.
Key words
alkynes - aryl ethynyl ethers - [2+2+2] cycloaddition - H8-BINAP - rhodium
- For recent reviews of the transition-metal-catalyzed [2+2+2] cycloaddition reactions, see:
-
1a
Galan BR.Rovis T. Angew. Chem. Int. Ed. 2009, 48: 2830 -
1b
Tanaka K. Chem. Asian J. 2009, 4: 508 -
1c
Varela JA.Saá C. Synlett 2008, 2571 -
1d
Shibata T.Tsuchikama K. Org. Biomol. Chem. 2008, 1317 -
1e
Heller B.Hapke M. Chem. Soc. Rev. 2007, 36: 1085 -
1f
Agenet N.Buisine O.Slowinski F.Gandon V.Aubert C.Malacria M. Organic Reactions Vol. 68:RajanBabu TV. John Wiley and Sons; Hoboken: 2007. p.1 -
1g
Chopade PR.Louie J. Adv. Synth. Catal. 2006, 348: 2307 -
1h
Gandon V.Aubert C.Malacria M. Chem. Commun. 2006, 2209 -
1i
Kotha S.Brahmachary E.Lahiri K. Eur. J. Org. Chem. 2005, 4741 -
1j
Gandon V.Aubert C.Malacria M. Curr. Org. Chem. 2005, 9: 1699 -
1k
Yamamoto Y. Curr. Org. Chem. 2005, 9: 503 - 2
Semmelhack MF.Park J. Organometallics 1986, 5: 2550 - 3
Suzuki D.Urabe H.Sato F. J. Am. Chem. Soc. 2001, 123: 7925 - 4
Takahashi T. inventors; JP 11263737. ; Chem. Abstr. 1999, 131, 228541 - For the transition-metal-mediated intermolecular [4+2]-benzannulation reactions using alkynyl ethers, see:
-
5a
Darbasie ND.Schnatter WFK.Warner KF.Manolache N. Tetrahedron Lett. 2006, 47: 963 -
5b
Dudley GB.Takaki KS.Cha DD.Danheiser RL. Org. Lett. 2000, 2: 3407 -
5c
Gevorgyan V.Quan LG.Yamamoto Y. J. Org. Chem. 2000, 65: 568 -
5d
Morris KG.Saberi SP.Thomas SE. J. Chem. Soc., Chem. Commun. 1993, 209 -
5e
Danheiser RL.Brisbois RG.Kowalczyk JJ.Miller RF. J. Am. Chem. Soc. 1990, 112: 3093 -
5f
Danheiser RL.Gee SK.Perez JJ. J. Am. Chem. Soc. 1986, 108: 806 - For the nickel-catalyzed complete intermolecular cross-[2+2+2] cycloaddition of two ethyl ethynyl ethers and carbon dioxide, see:
-
6a
Tsuda T.Kunisada K.Nagahama N.Morikawa S.Saegusa T. Synth. Commun. 1989, 19: 1575 -
6b For the rhodium-catalyzed
complete intermolecular cross-[2+2+2] cycloaddition
of two ethyl ethynyl ethers with an isocyanate, see:
Oberg KM.Lee EE.Rovis T. Tetrahedron 2009, 65: 5056 - 7 For the nickel-catalyzed complete
intermolecular cross-[3+2+2] cycloaddition
of ethyl cyclopropylideneacetate, an internal 1,3-diyne, and an
alkynyl ether, see:
Yamasaki R.Terashima N.Sotome I.Komagawa S.Saito S. J. Org. Chem. 2010, 75: 480 - 8
Komine Y.Tanaka K. Org. Lett. 2010, 12: 1312 - 9 For the rhodium-catalyzed [2+2+2] cycloadditions
of phenol-linked 1,6-diynes with alkynes and nitriles, leading to
substituted dibenzofurans and azadibenzofurans, see:
Komine Y.Kamisawa A.Tanaka K. Org. Lett. 2009, 11: 2361 - Tri- and diaryloxybenzenes are useful compounds in material sciences. For selected recent examples, see:
-
10a
Pei S.Chen X.Jiang Z.Peng W. J. Appl. Polym. Sci. 2010, 117: 2069 -
10b
Yamanaka M.Fujii H. J. Org. Chem. 2009, 74: 5390 -
10c
Chen X.Zhang Y.Liu B.Zhang J.Wang H.Zhang W.Chen Q.Pei S.Jiang Z. J. Mater. Chem. 2008, 18: 5019 -
10d
Rao X.Dang G.Zhou H.Yang W.Cui G.Chen C.Yokota R. J. Polym. Sci., Part A: Polym. Chem. 2007, 45: 4844 -
13a
Tanaka K.Shirasaka K. Org. Lett. 2003, 5: 4697 -
13b
Tanaka K.Toyoda K.Wada A.Shirasaka K.Hirano M. Chem. Eur. J. 2005, 11: 1145 - 14 For our account of the cationic
rhodium(I)-biaryl bisphosphine-complex-catalyzed [2+2+2]-cycloaddition reactions,
see:
Tanaka K. Synlett 2007, 1977 - For the rhodium(I)-catalyzed [2+2+2] cycloaddition of diynes with internal alkynyl ethers, see:
-
16a
Alayrac C.Schollmeyer D.Witulski B. Chem. Commun. 2009, 1464 -
16b
Clayden J.Moran WJ. Org. Biomol. Chem. 2007, 5: 1028
References and Notes
Aryl ethynyl ethers are stable compounds and can be readily handled and purified without any special precautions. For the synthesis of aryl ethynyl ethers 1a-e, see ref. 8.
12
Typical Procedure
(Table 2, Entry 1)
Under an argon atmosphere, H8-BINAP
(6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1
mg, 0.010 mmol) were dissolved in CH2Cl2 (1.0
mL), and the mixture was stirred for 5 min. H2 was introduced
to the resulting solution in a Schlenk tube. After stirring at r.t.
for 0.5 h, the resulting mixture was concentrated to dryness. To
a CH2Cl2 (0.5 mL) solution of the residue
was added a CH2Cl2 (1.5 mL) solution of 1a (67.3 mg, 0.400 mmol). The mixture was
stirred at r.t. for 1 h. The resulting mixture was concentrated
and purified on a preparative TLC (n-hexane-toluene = 4:1),
which furnished 2a (34.2 mg, 0.0678 mmol,
51% yield) and 3a (23.0 mg, 0.0456
mmol, 34% yield).
Compound 2a: ¹H
NMR (300 MHz, CDCl3): δ = 7.81-7.76 (m,
6 H), 7.72-7.70 (m, 3 H), 7.47-7.35 (m, 9 H),
7.27-7.23 (m, 3 H), 6.53 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 159.6, 153.9,
134.2, 130.4, 130.0, 127.7, 127.2, 126.6, 125.0, 119.9, 115.0, 103.9.
ESI-HRMS: m/z calcd for C36H24O3Na [M + Na]+:
527.1618; found: 527.1635.
Compound 3a: ¹H
NMR (300 MHz, CDCl3): δ = 7.84-7.64 (m,
9 H), 7.45-7.33 (m, 7 H), 7.30-7.13 (m, 6 H),
6.93-6.86 (m, 2 H). ¹³C NMR
(75 MHz, CDCl3): δ = 155.7, 154.7, 154.6,
154.1, 149.0, 142.9, 134.22, 134.19, 134.10, 130.3, 130.1, 130.0,
129.9, 129.7, 129.6, 127.73, 127.68, 127.66, 127.13, 127.08, 127.00,
126.6, 126.45, 126.43, 124.9, 124.6, 124.4, 123.1, 119.7, 119.1,
118.8, 114.8, 114.1, 113.2, 112.5, 111.7. ESI-HRMS: m/z calcd for C36H24O3Na [M + Na]+:
527.1618; found: 527.1617.
Compound 2b: ¹H
NMR (300 MHz, CDCl3): δ = 8.11-8.08 (m,
3 H), 7.84-7.81 (m, 3 H), 7.61-7.58 (m, 3 H),
7.51-7.44 (m, 6 H), 7.38-7.33 (m, 3 H), 7.07-7.05
(m, 3 H), 6.45 (s, 3 H).
Compound 3b: ¹H
NMR (300 MHz, CDCl3): δ = 8.21-8.18 (m,
1 H), 8.00-7.97 (m, 1 H), 7.86-7.83 (m, 2 H),
7.74-7.69 (m, 2 H), 7.61-7.58 (m, 1 H), 7.51-7.49
(m, 4 H), 7.40-7.21 (m, 7 H), 7.16-7.14 (m, 1
H), 7.01-6.97 (m, 2 H), 6.92-6.90 (m, 2 H), 6.82-6.78
(m, 1 H).
Compound 2c: ¹H
NMR (300 MHz, CDCl3): δ = 7.21-7.12 (m,
6 H), 7.07-7.01 (m, 3 H), 6.95-6.92 (m, 3 H),
6.12 (s, 3 H), 2.20 (s, 9 H).
Compound 3c: ¹H
NMR (300 MHz, CDCl3): δ = 7.23-7.18 (m,
1 H), 7.16-6.89 (m, 10 H), 6.81-6.78 (m, 1 H),
6.74-6.72 (m, 1 H), 6.60-6.56 (m, 2 H), 2.24 (s,
3 H), 2.05 (s, 3 H), 1.98 (s, 3 H).
Compound 2d: ¹H NMR (300 MHz,
CDCl3): δ = 6.98-6.94 (m,
6 H), 6.88-6.82 (m, 6 H), 6.19 (s, 3 H), 3.78 (s, 9 H).
Compound 3d: ¹H NMR (300 MHz,
CDCl3): δ = 6.96-6.80 (m,
13 H), 6.61-6.54 (m, 2 H), 3.78 (s, 3 H), 3.77 (s, 6 H).
Compound 2e: ¹H NMR (300 MHz,
CDCl3): δ = 7.62-7.60 (m,
6 H), 7.12-7.10 (m, 6 H), 6.51 (s, 3 H).
Compound 3e: ¹H NMR (300 MHz,
CDCl3): δ = 7.64-7.61 (m,
2 H), 7.54-7.51 (m, 4 H), 7.23-7.20 (m, 1 H),
7.13-7.10 (m, 2 H), 6.95-6.90 (m, 6 H).
Typical Procedure
(Table 4, Entry 1)
Under an argon atmosphere, H8-BINAP
(6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1
mg, 0.010 mmol) were dissolved in CH2Cl2 (1.0
mL), and the mixture was stirred for 5 min. H2 was introduced
to the resulting solution in a Schlenk tube. After stirring at r.t.
for 0.5 h, the resulting mixture was concentrated to dryness. To
a CH2Cl2 (0.5 mL) solution of the residue
and 4a (44.9 mg, 0.400 mmol) was added
a CH2Cl2 (1.5 mL) solution of 1a (67.3
mg, 0.400 mmol). The mixture was stirred at r.t. for 1 h. The resulting mixture
was concentrated and purified on a preparative TLC (n-hexane-EtOAc = 15:1),
which furnished 5aa (53.9 mg, 0.120 mmol,
60% yield) and 6aa (18.5 mg, 0.0412
mmol, 21% yield).
Compound 5aa: ¹H
NMR (300 MHz, CDCl3): δ = 7.81-7.77 (m,
4 H), 7.72-7.69 (m, 2 H), 7.47-7.37 (m, 4 H),
7.34-7.33 (m, 2 H), 7.27-7.23 (m, 1 H), 7.21-7.18
(m, 1 H), 6.66 (d, J = 1.8
Hz, 1 H), 6.56 (d, J = 1.8
Hz, 1 H), 4.28 (q, J = 7.1 Hz,
2 H), 2.38 (s, 3 H), 1.20 (t, J = 7.1
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1,
158.92, 158.91, 155.6, 154.7, 153.8, 139.40, 139.38, 134.1, 130.4,
130.1, 130.0, 129.8, 127.7, 127.6, 127.1, 126.6, 126.5, 125.0, 124.7,
121.6, 119.8, 119.4, 115.3, 114.9, 113.9, 107.6, 61.2, 19.8, 14.1. ESI-HRMS: m/z calcd for C30H24O4Na [M + Na]+:
471.1567; found: 471.1575.
Compound 6aa: ¹H
NMR (300 MHz, CDCl3): δ = 7.81-7.77 (m,
4 H), 7.70-7.65 (m, 2 H), 7.47-7.34 (m, 5 H),
7.30 (d, J = 2.4
Hz, 1 H), 7.24-7.20 (m, 2 H), 7.13-7.12 (m, 1
H), 6.90 (d, J = 2.4
Hz, 1 H), 4.36 (q, J = 7.1
Hz, 2 H), 2.48 (s, 3 H), 1.37 (t, J = 7.1
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1,
155.9, 155.2, 154.5, 134.23, 134.20, 133.6, 130.2, 130.08, 130.04,
129.9, 127.7, 127.1, 127.0, 126.8, 126.6, 124.8, 124.6, 119.5, 118.8,
116.5, 114.6, 113.9, 112.1, 61.2, 14.2, 12.9. ESI-HRMS: m/z calcd for C30H24O4Na [M + Na]+:
471.1567; found: 471.1567.
Compound 5ab: ¹H
NMR (300 MHz, CDCl3): δ = 7.80-7.77 (m,
4 H), 7.71-7.68 (m, 2 H), 7.46-7.32 (m, 6 H),
7.27-7.17 (m, 2 H), 6.69 (d, J = 1.8
Hz, 1 H), 6.54 (d, J = 1.8
Hz, 1 H), 4.29 (q, J = 7.1
Hz, 2 H), 2.66 (t, J = 7.4
Hz, 2 H), 1.65-1.55 (m, 2 H), 1.43-1.30 (m, 2
H), 1.22 (t, J = 7.1
Hz, 3 H), 0.91 (t, J = 7.4
Hz, 3 H).
Compound 6ab: ¹H
NMR (300 MHz, CDCl3): δ = 7.83-7.78 (m,
4 H), 7.70-7.68 (m, 2 H), 7.47-7.35 (m, 4 H),
7.31-7.30 (m, 2 H), 7.25-7.19 (m, 3 H), 6.84 (d, J = 2.7 Hz,
1 H), 4.36 (q, J = 7.2
Hz, 2 H), 2.94 (t, J = 7.5
Hz, 2 H), 1.61-1.51 (m, 2 H), 1.47-1.35 (m, 5
H), 0.90 (t, J = 7.5
Hz, 3 H).
Compound 5ac: ¹H
NMR (300 MHz, CDCl3): δ = 7.87-7.61 (m,
6 H), 7.54-7.13 (m, 13 H), 6.81 (d, J = 2.4
Hz, 1 H), 6.70 (d, J = 2.4
Hz, 1 H), 4.06 (q, J = 7.2
Hz, 2 H), 0.93 (t, J = 7.2 Hz,
3 H). An aromatic proton of the tetrasubstituted benzene moiety
of minor isomer 6ac: 6.93 (d, J = 2.4 Hz,
1 H). Ethoxy protons of minor isomer 6ac:
3.99 (q, J = 7.2
Hz, 2H), 0.89 (t, J = 7.2
Hz, 3 H).
Compound 5ba: ¹H
NMR (300 MHz, CDCl3): δ = 8.23-8.20 (m,
1 H), 8.02-7.99 (m, 1 H), 7.84-7.81 (m, 2 H),
7.62-7.57 (m, 2 H), 7.52-7.41 (m, 4 H), 7.37-7.32
(m, 2 H), 7.01-6.96 (m, 2 H), 6.53 (d, J = 2.4
Hz, 1 H), 6.45 (d, J = 2.4
Hz, 1 H), 4.22 (q, J = 7.1
Hz, 2 H), 2.34 (s, 3 H), 1.14 (t, J = 7.1
Hz, 3 H).
Compound 5ca: ¹H
NMR (300 MHz, CDCl3): δ = 7.24-6.99 (m,
6 H), 6.95-6.85 (m, 2 H), 6.31 (d, J = 2.1
Hz, 1 H), 6.17 (d, J = 2.1
Hz, 1 H), 4.30 (q, J = 7.2
Hz, 2 H), 2.30 (s, 3 H), 2.23 (s, 3 H), 2.15 (s, 3 H), 1.27 (t, J = 7.2 Hz,
3 H).
Compound 5da: ¹H
NMR (300 MHz, CDCl3): δ = 6.98-6.90 (m,
4 H), 6.88-6.83 (m, 4 H), 6.39 (d, J = 2.0
Hz, 1 H), 6.29 (d, J = 2.0
Hz, 1 H), 4.32 (q, J = 7.1
Hz, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.30 (s, 3 H), 1.29 (t, J = 7.1 Hz,
3 H).
Compound 6da: ¹H
NMR (300 MHz, CDCl3): δ = 7.11 (d, J = 2.7 Hz,
1 H), 6.94-6.90 (m, 2 H), 6.87-6.83 (m, 6 H), 6.61
(d, J = 2.7
Hz, 1 H), 4.33 (q, J = 7.1
Hz, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.42 (s, 3 H), 1.36 (t, J = 7.1 Hz,
3 H).
Compound 5ea: ¹H
NMR (300 MHz, CDCl3): δ = 7.61-7.56 (m,
4 H), 7.08-7.03 (m, 4 H), 6.72 (d, J = 2.1
Hz, 1 H), 6.52 (d, J = 2.1
Hz, 1 H), 4.26 (q, J = 7.2
Hz, 2 H), 2.39 (s, 3 H), 1.18 (t, J = 7.2
Hz, 3 H).
Compound 6ea: ¹H
NMR (300 MHz, CDCl3): δ = 7.60-7.56 (m,
4 H), 7.43 (d, J = 2.4
Hz, 1 H), 7.06-7.03 (m, 2 H), 6.97-6.94 (m, 2
H), 6.84 (d, J = 2.4
Hz, 1 H), 4.38 (q, J = 7.2
Hz, 2 H), 2.41 (s, 3 H), 1.39 (t, J = 7.2
Hz, 3 H).
Compound 10: ¹H NMR (300 MHz, CDCl3): δ = 7.89-7.72 (m, 4 H), 7.72-7.63 (m, 1 H), 7.49-7.37 (m, 3 H), 7.37-7.29 (m, 2 H), 7.22-7.17 (m, 1 H), 7.16-7.10 (m, 1 H), 6.98-6.91 (m, 1 H), 6.87-6.81 (m, 1 H), 4.60 (s, 2 H), 4.58 (s, 2 H), 2.42 (s, 3 H).