Subscribe to RSS
DOI: 10.1055/s-0030-1259069
Effects of a Flexible Alkyl Chain on an Imidazole Ligand for Copper-Catalyzed Mannich Reactions of Terminal Alkynes
Publication History
Publication Date:
24 November 2010 (online)

Abstract
Copper-catalyzed Mannich reactions of terminal alkynes and secondary amines with aqueous formaldehyde can be accelerated by the use of a catalytic amount of an imidazole ligand carrying a long alkyl chain. The alkyl chain shows an efficient steric effect and helps the reaction. This imidazole ligand is efficient for various substrates, including even bulky alkynes.
Key words
alkyl chain - imidazole - steric effect - copper - Mannich reaction
-
1a
Israelachvili JN.Mitchell DJ.Ninham BW. J. Chem. Soc., Faraday Trans. 2 1976, 72: 1525 -
1b
Holbrey JD.Seddon KR. J. Chem. Soc., Dalton Trans. 1999, 2133 - 2
Asano K.Matsubara S. Org. Lett. 2010, 12: 4988 - 3
Malcolmson SJ.Meek SJ.Sattely ES.Schrock RR.Hoveyda AH. Nature (London) 2008, 456: 933 -
4a
Asano K.Matsubara S. Org. Lett. 2009, 11: 1757 -
4b
Asano K.Matsubara S. Synlett 2009, 35 -
4c
Asano K.Matsubara S. Synthesis 2009, 3219 -
4d
Güntensperger M.Zuberbühler AD. Helv. Chim. Acta 1977, 60: 2584 -
4e
Asano K.Matsubara S. Heterocycles 2010, 80: 989 - Copper(I)-imidazole systems have been well studied and shown to form a stable complex with an affinity for π-acceptor compounds, see:
-
5a
Kitagawa S.Munakata M. Bull. Chem. Soc. Jpn. 1986, 59: 2743 -
5b
Kitagawa S.Munakata M. Bull. Chem. Soc. Jpn. 1986, 59: 2751 -
5c
Gaykema WPJ.Hol WGJ.Vereijken JM.Soeter NM.Bak HJ.Beintema JJ. Nature (London) 1984, 309: 23 -
5d
Linzen B.Soeter NM.Riggs AF.Schneider H.-J.Schartau W.Moore MD.Yokota E.Behrens PQ.Nakashima H.Takagi T.Nemoto T.Vereijken JM.Bak HJ.Beintema JJ.Volbeda A.Gaykema WPJ.Hol WGJ. Science 1985, 229: 519 -
6a
Hayashi Y.Aratake S.Okano T.Takahashi J.Sumiya T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 5527 -
6b
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734 -
6c
Manabe K.Sun X.-M.Kobayashi S. J. Am. Chem. Soc. 2001, 123: 10101 -
7a
Mannich C.Chang FT. Ber. Dtsch. Chem. Ges. 1933, 66: 418 -
7b
Tramontini M. Synthesis 1973, 703 -
7c
Tramontini M.Angiolini L. Tetrahedron 1990, 46: 1791 -
8a
Karlén B.Lindeke B.Lindgren S.Svensson K.-G.Dahlbom R.Jenden DJ.Giering JE. J. Med. Chem. 1970, 13: 651 -
8b
Simon DZ.Salvador RL.Champagne G. J. Med. Chem. 1970, 13: 1249 -
8c
Adams TC.Dupont AC.Carter JP.Kachur JF.Guzewska ME.Rzeszotarski WJ.Farmer SG.Noronha-Blob L.Kaiser C. J. Med. Chem. 1991, 34: 1585 -
8d
Nilsson BM.Vargas HM.Ringdahl B.Hacksell U. J. Med. Chem. 1992, 35: 285 -
8e
Sanders KB.Thomas AJ.Pavia MR.Davis RE.Coughenour LL.Myers SL.Fisher S.Moos WH. Bioorg. Med. Chem. Lett. 1992, 2: 803 -
8f
Musso DL.Clarke MJ.Kelley JL.Boswell GE.Chen G. Org. Biomol. Chem. 2003, 1: 498 -
9a
Hattori K.Miyata M.Yamamoto H. J. Am. Chem. Soc. 1993, 115: 1151 -
9b
Boys ML. Tetrahedron Lett. 1998, 39: 3449 -
9c
Craig JC.Ekwuribe NN. Tetrahedron Lett. 1980, 21: 2587 -
9d
Nakamura H.Kamakura T.Ishikura M.Biellman J.-F. J. Am. Chem. Soc. 2004, 126: 5958 -
9e
Nakamura H.Ishikura M.Sugiishi T.Kamakura T.Biellman J.-F. Org. Biomol. Chem. 2008, 6: 1471 -
9f
Tabei J.Nomura R.Masuda T. Macromolecules 2002, 35: 5405 -
9g
Gao G.Sanda F.Masuda T. Macromolecules 2003, 36: 3932 -
9h
Crabbé P.Fillion H.André D.Luche J.-L. J. Chem. Soc., Chem. Commun. 1979, 859 -
9i
Kuang J.Ma S. J. Org. Chem. 2009, 74: 1763 -
9j
Kuang J.Ma S. J. Am. Chem. Soc. 2010, 132: 1786 -
9k
Ohno H.Ohta Y.Oishi S.Fujii N. Angew. Chem. Int. Ed. 2007, 46: 2295 -
9l
Suzuki Y.Ohta Y.Oishi S.Fujii N.Ohno H. J. Org. Chem. 2009, 74: 4246 -
9m
Ohta Y.Kubota Y.Watabe T.Chiba H.Oishi S.Fujii N.Ohno H. J. Org. Chem. 2009, 74: 6299 -
10a
Kabalka GW.Wang L.Pagni RM. Synlett 2001, 676 -
10b
Sharifi A.Farhangian H.Mohsenzadeh F.Naimi-Jamal MR. Monatsh. Chem. 2002, 133: 199 -
10c
Bieber LW.da Silva MF. Tetrahedron Lett. 2004, 45: 8281 -
10d
Kabalka GW.Zhou L.-L.Wang L.Pagni RM. Tetrahedron 2006, 62: 857 -
10e
Sharifi A.Mirzaei M.Naimi-Jamal MR. J. Chem. Res. 2007, 129 -
11a
Wang M.Li P.Wang L. Eur. J. Org. Chem. 2008, 2255 -
11b
Li P.Wang L. Tetrahedron 2007, 63: 5455 - 12
Stephens RD.Castro CE. J. Org. Chem. 1963, 28: 3313 -
13a
Asano Y.Hara K.Ito H.Sawamura M. Org. Lett. 2007, 9: 3901 -
13b
Asano Y.Ito H.Hara K.Sawamura M. Organometallics 2008, 27: 5984 -
14a
Li C.-J.Chan T.-H. In Organic Reactions in Aqueous Media John Wiley and Sons; New York: 1997. -
14b
Li C.-J. Acc. Chem. Res. 2010, 43: 581 -
14c
Chen L.Li C.-J. Adv. Synth. Catal. 2006, 348: 1459 -
15a
Kobayashi S. Chem. Lett. 1991, 2187 -
15b
Kobayashi S.Hachiya I. J. Org. Chem. 1994, 59: 3590 - 17
Dureen MA.Stephan DW. J. Am. Chem. Soc. 2009, 131: 8396
References and Notes
Similar investigations corresponding to Table [³] were also performed with 4c and 4d, which carry alkyl chains of other lengths; also in those cases, a drastic acceleration such as occurred in the case of 4e was not observed.
18
General Procedure
for Mannich Reactions of Terminal Alkynes and Secondary Amines with
Formaldehyde
To a 5 mL vial were added sequentially
terminal alkyne 1 (1.0 mmol), secondary
amine 2 (1.0 mmol), formaldehyde (37% aq
solution, 1.2 mmol), 1-hexadecylimidazole (4e, 0.01
mmol), and CuI (0.005 mmol, 1.0 mg). The mixture was stirred in
an oil bath kept at 25 ˚C for 1.5 h. The mixture was
diluted with EtOAc, dried (anhyd Na2SO4),
and concentrated in vacuo. Purification by flash column chromatography
(silica gel, hexane-EtOAc) gave the corresponding propargylamine 3.
1-(3-Phenylprop-2-yn-1-yl)piperidine
(3aa)
CAS [2568-57-2]. Orange oil. ¹H
NMR (500 MHz, CDCl3): δ = 7.43 (m,
2 H), 7.30-7.27 (m, 3 H), 3.48 (s, 2 H), 2.57 (br s, 4
H), 1.64 (tt, J = 5.5,
6.0 Hz, 4 H), 1.45 (br s, 2 H). ¹³C NMR
(125,7 MHz, CDCl3): δ = 131.7, 128.2,
127.9, 123.3, 85.1, 84.9, 53.5, 48.5, 26.0, 23.9.
The reactions of dibutylamine and dicyclohexylamine could be performed to afford the corresponding products quantitatively even without any ligand.