RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259301
Facile Route for Novel Quinazolinone-Fused Azauracils through Cyclodesulfurization of Thioquinazolinones
Publikationsverlauf
Publikationsdatum:
05. Januar 2011 (online)
Abstract
An efficient, novel, short, and high-yielding one-pot protocol for the synthesis of diverse quinazolinone-fused azauracil heterocycles through cyclodesulfurization and intramolecular cyclization of thioquinazolinone using silver cyanate is described.
Key words
thioquinazolinone - cyclodesulfurization - benzotriazole - cyclization - fused heterocycles
-
1a
Evans BE.Rittle KE.Bock MG.DiPardo RM.Freidinger RM.Whitter WL.Lundell GF.Veber DF.Anderson PS.Chang RSL.Lotti VJ.Cerino DJ.Chen TB.Kling PJ.Kunkel KA.Springer JP.Hirshfield J. J. Med. Chem. 1988, 31: 2235 -
1b
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 -
1c
Kumar A.Maurya RA.Ahmad P. J. Comb. Chem. 2009, 11: 198 - 2
Kale RR.Prasad V.Mohapatra P.Tiwari VK. Monatsh. Chemie 2010, 141: 1159 - 3
Lawrence RN. Drug Discovery Today 2000, 5: 172 - 4
Molnar A.Boros S.Simon K.Hermecz I.Gonczi C. ARKIVOC 2010, (x): 199 -
5a
Kim TH.Lee N.Lee G.Kim JN. Tetrahedron 2001, 57: 7137 -
5b
Gama Y.Shibuya I.Shimizu M. Chem. Pharm. Bull. 2002, 50: 1517 -
5c
Gama Y.Shibuya I.Shimizu M.Goto M. J. Carbohydr. Chem. 2001, 20: 459 -
5d
Alhede B.Clamen FP.Christensen J.McCluskey KK.Preikschat HF. J. Org. Chem. 1991, 56: 2139 -
5e
Chern J.Groziak MP.Townsend LB.
J. Heterocycl. Chem. 1986, 23: 153 - 6
Mhaske SB.Argade NP. Tetrahedron 2006, 62: 9787 -
7a
Tiwari VK.Singh DD.Hussain HA.Mishra BB.Singh A. Monatsh. Chemie 2008, 139: 43 -
7b
Tiwari VK.Hussain HA.Mishra BB.Singh DD.Tripathi V. Med. Chem. Res. 2007, 15: 325 -
7c
Tiwari VK.Kale RR.Mishra BB.Singh A. ARKIVOC 2008, (xiv): 27 -
8a
Kale RR.Prasad V.Tiwari VK. Tetrahedron Lett. 2010, 51: 5740 -
8b
Kale RR.Prasad V.Tiwari VK. Lett. Org. Chem. 2010, 7: 136 -
8c
Tiwari VK.Singh A.Hussain HA.Mishra BB.Tripathi V. Monatsh. Chem. 2007, 138: 1297 -
8d
Singh A.Kale RR.Tiwari VK. Trends Carbohydr. Res. 2009, 1: 80 -
9a
Pandey J.Sharma A.Tiwari VK.Dube D.Ramachandran R.Chaturvedi V.Sinha S.Mishra NN.Shulka PK.Tripathi RP. J. Comb. Chem. 2009, 11: 422 -
9b
Yu H.Cheng J.Ding L.Khedri Z.Chen Y.Lau K.Tiwari VK.Chen Xi. J. Am. Chem. Soc. 2009, 131: 18467 -
9c
Tewari N.Katiyar D.Tiwari VK.Tripathi RP. Tetrahedron Lett. 2002, 44: 6639 -
9d
Tewari N.Mishra RC.Tiwari VK.Tripathi RP. Synlett 2002, 1779 -
9e
Tewari N.Tiwari VK.Mishra RC.Tripathi RP.Srivastava AK.Ahmad R.Srivastava R.Srivastava BS. Bioorg. Med. Chem. 2003, 11: 2911 -
9f
Saxena N.Verma SS.Tiwari VK.Chaturvedi V.Manju YK.Srivastva AK.Gaikwad A.Sinha S.Tripathi RP. Bioorg. Med. Chem. Lett. 2006, 14: 8186
References and Notes
Typical Experimental
Procedure for the Synthesis of Quinazolinone-Fused Azauracil Compounds
3a-h
Diverse 2-thioxo-2,3-dihydroquinazolin-4
(1H)-ones 2a-h were obtained in good yield by the one-pot
reaction of anthranilic acid/esters, primary amines, and
bis(benzo-triazol-1-yl)methanethione in presence of the amidine
base as per ref. 7. Thioquinazolinone (2a,
0.5 g 1.96 mmol) was added in anhyd MeCN (8 mL) and stirred for
10 min then AgCNO (0.59 g, 3.93 mmol) was added in above solution. Solid
precipitated out within 5 min and reaction mixture was further stirred
for 30 min, where reaction mass turns into greenish color. Progress
of reaction was monitored by TLC (25% EtOAc in n-hexane). After completion of reaction, product
was filtered, dried, and subjected to column chromatography (25% EtOAc
in n-hexane) to obtain pure white solid
(90-95% yield).
Compound 3a:
yield 91%; mp 160-162 ˚C. IR
(KBr): νmax = 3429 (NH), 1676, 1591,
1568, 1508 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.04
(d, J = 7.5
Hz, 1 H), 7.83 (t, J = 7.2 Hz,
1 H), 7.71 (d, J = 8.4
Hz, 1 H), 7.43 (m, 4 H), 6.77 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 166.10,
161.03, 145.95, 139.88, 134.52, 129.39, 129.16, 128.14, 128.04, 126.49,
124.01, 119.64 ppm. Anal. Calcd for C16H10N4O3:
C, 62.74; H, 3.29; N, 18.29. Found: C, 62.51; H, 3.75; N, 18.88.
Compound 3b: yield 91%; mp 178-180 ˚C.
IR (KBr): νmax = 3431 (NH), 1669, 1596,
1569, 1511 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 11.02
(br s, 1 H, NH), 7.96 (d, J = 7.8
Hz, 2 H), 7.67 (t, J = 8.4
Hz, 2 H), 7.48 (d, J = 8.4
Hz, 1 H), 7.34 (t, J = 8.4
Hz, 1 H), 7.04 (t, J = 8.7
Hz, 2 H), 6.69 (s, 1 H). ¹³C NMR (75
MHz, CDCl3): δ = 167.84,
162.0, 140.91, 134.79, 134.79, 133.17, 133.06, 130.66, 129.96, 126.84, 123.90,
123.41, 118.27 ppm. Anal. Calcd for C19H11N5O3S: C,
58.61; H, 2.85; N, 17.99. Found: C, 58.22; H, 3.01; N, 18.45.
Compound 3c: yield 91%; mp 187-188 ˚C.
IR (KBr): νmax = 3430, 1677, 1593,
1577, 1507 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 9.82
(br s, NH, 1 H), 8.42 (d, J = 9.0
Hz, 2 H), 8.23 (m, 2 H), 7.77 (t, J = 7.8
Hz, 1 H), 7.48 (d, J = 8.7
Hz, 1 H), 7.38 (m, 1 H), 7.15 (d, J = 8.7
Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 165.5,
159.90, 145.33, 143.27, 137.98, 133.80, 129.00, 125.60, 124.35,
122.55, 122.42, 114.37, 114.17, 110.53 ppm.
Compound 3d: yield 91%; mp 171-173 ˚C.
IR (KBr): νmax = 3433 (NH), 1677 (O=CN),
1622, 1529 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.35
(d, J = 8.7
Hz, 2 H), 7.99-7.89 (m, merged with J = 7.2
Hz, 2 H), 7.75 (d, J = 8.4
Hz, 1 H), 7.49 (d, J = 8.1
Hz, 2 H), 7.33 (t, J = 7.5
Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 165.10,
159.07, 145.90, 139.54, 135.41, 130.72, 130.27, 130.17, 127.27,
126.27, 126.10, 124.39, 124.34 ppm. Anal. Calcd for C16H9FN4O3:
C, 59.26; H, 2.80; N, 17.28. Found: C, 59.93; H, 2.74; N, 17.97.