Synlett 2011(2): 235-240  
DOI: 10.1055/s-0030-1259307
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Studies on the Lithiation of Hydroxypyrrolidines: Synthesis of Polyhydroxy­lated Pyrrolidines via Chiral Enecarbamates

Alessandro Mordini*a,b, Michela Valacchia, Francesco Epirotia, Gianna Reginatob, Stefano Cicchia,b, Andrea Goti*a,b
a Dipartimento di Chimica ‘Ugo Schiff’, HeteroBioLab, Università di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
Fax: +39(055)4573531; e-Mail: andrea.goti@unifi.it; e-Mail: alessandro.mordini@unifi.it;
b ICCOM-C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
Weitere Informationen

Publikationsverlauf

Received 15 November 2010
Publikationsdatum:
05. Januar 2011 (online)

Abstract

The chiral endocyclic enecarbamate 14 has been obtained by deprotonation-elimination from the N-Boc pyrrolidine 5 (or its racemic counterpart from 15). Efficiently stereocontrolled epoxidation-methanolysis of 14 afforded α-alkoxy carbamates, which undergo completely stereoselective nucleophilic substitutions to give trisubstituted dihydroxypyrrolidines.

    References and Notes

  • 1a Asano N. Nash RJ. Molyneux RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1645 
  • 1b Watson AA. Fleet GWJ. Asano N. Molyneux RJ. Nash RJ. Phytochemistry  2001,  56:  265 
  • 1c Yamashita T. Yasuda K. Kizu H. Kameda Y. Watson AA. Nash RJ. Fleet GWJ. Asano N. J. Nat. Prod.  2002,  65:  1875 
  • 1d Asano N. Ikeda K. Kasahara M. Arai Y. Kizu H.
    J. Nat. Prod.  2004,  67:  846 
  • 1e Kato A. Kato N. Adachi I. Hollinshead J. Fleet GWJ. Kuriyama C. Ikeda K. Asano N. Nash RJ. J. Nat. Prod.  2007,  70:  993 
  • 1f Saludes JP. Lievens SC. Molinski TF. J. Nat. Prod.  2007,  70:  436 
  • 2a Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond   Stütz AE. Wiley-VCH; Weinheim: 1998. 
  • 2b Nash RJ. In Bioactive Natural Products   2nd ed.:  Colegate SM. Molyneux RJ. CRC; Boca Raton: 2008.  p.407-420  
  • 2c Asano N. Glycobiology  2003,  13:  93R ; and references cited therein
  • 2d Asano N. Nash RJ. Molyneux RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1645 
  • 2e Vasella A. Heightman TD. Angew. Chem. Int. Ed.  1999,  38:  750 
  • 2f Gloster TM. Davies GJ. Org. Biomol. Chem.  2010,  8:  305 
  • 3a Iminosugars: from Synthesis to Therapeutic Applications   Compain P. Martin OR. Wiley-VCH; Weinheim: 2007. 
  • 3b Asano N. Curr. Top. Med. Chem.  2003,  3:  471 ; and references cited therein
  • 3c Zou W. Curr. Top. Med.  2005,  5:  1363 
  • 3d Mizushina Y. Xu X. Asano N. Kasai N. Kato A. Takemura M. Ashara H. Linn S. Sugawara F. Yoshida H. Sakaguchi K. Biochem. Biophys. Res. Commun.  2003,  304:  78 
  • 3e Fiaux H. Popowycz F. Favre S. Schuetz C. Vogel P. Gerber-Lemaire S. Juillerat-Jeanneret L. J. Med. Chem.  2005,  48:  4237 
  • 3f Liang P.-H. Cheng W.-C. Lee Y.-L. Yu H.-P. Wu Y.-T. Lin Y.-L. Wong C.-H. ChemBioChem  2006,  7:  165 
  • 3g Robina I. Moreno-Vargas AJ. Carmona AT. Vogel P. Curr. Drug Metab.  2004,  5:  329 
  • 4a Michael JP. Nat. Prod. Rep.  2000,  17:  579 
  • 4b Elbein AD. Molyneux RJ. Comprehensive Natural Products Chemistry   Vol. 3:  Barton D. Nakanishi K. Elsevier; Amsterdam: 1999.  p.129 
  • 4c Lillelund VH. Jensen HH. Liang XF. Bols M. Chem. Rev.  2002,  102:  515 
  • 4d Michael JP. In Alkaloids   Vol. 55:  Cordell GA. Academic Press; Oxford: 2001.  p.99-258  
  • 4e Compain P. Chagnault V. Martin OR. Tetrahedron: Asymmetry  2009,  20:  672 
  • 4f Davis BG. Tetrahedron: Asymmetry  2009,  20:  652 
  • 4g Merino P. Delso I. Marca E. Tejero T. Matute R. Curr. Chem. Biol.  2009,  3:  253 
  • 4h Merino P. Tejero T. Delso I. Curr. Med. Chem.  2008,  15:  954 
  • 4i Pearson MSM. Mathe-Allainmat M. Fargeas V. Lebreton J. Eur. J. Org. Chem.  2005,  2159 
  • 4j Robina I. Vogel P. Synthesis  2005,  675 
  • 4k El-Ashry E.-SH. El Nemr A. Carbohydr. Res.  2003,  338:  2265 
  • 4l Asano N. Hashimoto H. Glycoscience  2001,  3:  2541 
  • For reviews, see:
  • 5a Hoppe D. Hense T. Angew. Chem., Int. Ed. Engl.  1997,  36:  2282 
  • 5b Beak P. Basu A. Gallagher DJ. Park YS. Thayumanavan S. Acc. Chem. Res.  1996,  29:  552 
  • 6a Kerrick ST. Beak P. J. Am. Chem. Soc.  1991,  113:  9708 
  • 6b Beak P. Kerrick ST. Wu S. Chu J. J. Am. Chem. Soc.  1993,  116:  3231 
  • 7a Dearden MJ. Firkin CR. Hermet J.-PR. O’Brien P. J. Am. Chem. Soc.  2002,  124:  11870 
  • 7b O’Brien P. Wiberg KB. Bailey WF. Hermet J.-PR. McGrath MJ. J. Am. Chem. Soc.  2004,  126:  15480 
  • 7c Carbone G. O’Brien P. Hilmersson G. J. Am. Chem. Soc.  2010,  132:  15445 
  • 7d O’Brien P. Chem. Commun.  2008,  655 
  • 8a Giles M. Hadley MS. Gallagher T. J. Chem. Soc., Chem. Commun.  1990,  831 
  • The same behavior has been reported for 3-methoxypiperidines:
  • 8b Beak P. Lee WK. J. Org. Chem.  1993,  58:  1109 
  • 9a Cardona F. Goti A. Brandi A. Eur. J. Org. Chem.  2007,  1551 
  • 9b Brandi A. Cardona F. Cicchi S. Cordero FM. Goti A. Chem. Eur. J.  2009,  15:  7808 
  • 9c Marradi M. Cicchi S. Delso I. Rosi L. Tejero T. Merino P. Goti A. Tetrahedron Lett.  2005,  46:  1287 
  • 9d Goti A. Cicchi S. Mannucci V. Cardona F. Guarna F. Merino P. Tejero T. Org. Lett.  2003,  5:  4235 
  • 9e Merino P. Delso I. Tejero T. Cardona F. Goti A. Synlett  2007,  2651 
  • 9f Merino P. Delso I. Tejero T. Cardona F. Marradi M. Faggi E. Parmeggiani C. Goti A. Eur. J. Org. Chem.  2008,  2929 
  • 9g Delso I. Marca E. Mannucci V. Tejero T. Goti A. Merino P. Chem. Eur. J.  2010,  16:  9910 
  • 9h Delso I. Tejero T. Goti A. Merino P. Tetrahedron  2010,  66:  1220 
  • 9i Cardona F. Faggi E. Liguori M. Cacciarini A. Goti A. Tetrahedron Lett.  2003,  44:  2315 
  • 9j Cicchi S. Marradi M. Vogel P. Goti A.
    J. Org. Chem.  2006,  71:  1614 
  • 9k Cardona F. Parmeggiani C. Faggi E. Bonaccini C. Gratteri P. Sim L. Gloster TM. Roberts S. Davies GJ. Rose DR. Goti A. Chem. Eur. J.  2009,  15:  1627 
  • 9l Parmeggiani C. Martella D. Cardona F. Goti A. J. Nat. Prod.  2009,  72:  2058 
  • 9m Bonaccini C. Chioccioli M. Parmeggiani C. Cardona F. Lo Re D. Soldaini G. Vogel P. Bello C. Goti A. Gratteri P. Eur. J. Org. Chem.  2010,  5574 
  • 9n Marradi M. Corsi M. Cicchi S. Bonanni M. Cardona F. Goti A. Heterocycles  2009,  79:  883 
  • 10a Bonanni M. Soldaini G. Faggi C. Goti A. Cardona F. Synlett  2009,  747 
  • 10b Goti A. Cardona F. Brandi A. Picasso S. Vogel P. Tetrahedron: Asymmetry  1996,  7:  1659 
  • 11a Goti A. Cicchi S. Cacciarini M. Cardona F. Fedi V. Brandi A. Eur. J. Org. Chem.  2000,  3633 
  • 11b McCaig AE. Meldrum KP. Wightman RH. Tetrahedron  1998,  54:  9429 
  • 12a Cicchi S. Goti A. Brandi A. J. Org. Chem.  1995,  60:  4743 
  • 12b Nagel U. Kinzel E. Andrade J. Prescher G. Chem. Ber.  1986,  119:  3326 
  • 13 Pandey G. Chakrabarti D. Tetrahedron Lett.  1996,  37:  2285 
  • 14 Sunose M. Peakman TM. Charmant JPH. Gallagher T. Macdonald SJF. Chem. Commun.  1998,  1723 
  • 15a Schlosser M. J. Organomet. Chem.  1967,  8:  9 
  • 15b Mordini A. In Comprehensive Organometallic Chemistry II   Vol. 11:  Abel EW. Stone FGA. Wilkinson G. McKillop A. Pergamon; Oxford: 1995.  p.93-128  
  • 15c Mordini A. Valacchi M. Science of Synthesis   Trost BM. Snieckus V. Majewski M. Thieme; Stuttgart: 2006.  Chap. 8.3.
  • 15d Mordini A. In Comprehensive Organometallic Chemistry III   9:  Crabtree RH. Mingos DMP. Knochel P. Pergamon Press; Oxford: 2007.  p.3 
  • 16 Margot C. Schlosser M. Tetrahedron Lett.  1985,  26:  1035 
  • 17 Norton Matos M. Afonso CAM. Batey RA. Tetrahedron  2005,  61:  1221 ; and references cited therein
  • 19a Crandall JK. Apparu M. Org. React.  1983,  29:  345 
  • 19b Mordini A. Ben Rayana E. Margot C. Schlosser M. Tetrahedron  1990,  46:  2401 
  • 19c Degl’Innocenti A. Mordini A. Pecchi S. Pinzani D. Reginato G. Ricci A. Synlett  1992,  753 
  • 19d Mordini A. Valacchi M. Pecchi S. Degl’Innocenti A. Reginato G. Tetrahedron Lett.  1996,  37:  5209 
  • 19e Mordini A. Pecchi S. Capozzi G. Capperucci A. Degl’Innocenti A. Reginato G. Ricci A. J. Org. Chem.  1994,  59:  4784 
  • 19f Bigi A. Mordini A. Thurner A. Faigl F. Poli G. Toke L. Tetrahedron: Asymmetry  1998,  9:  2293 
  • 19g Mordini A. Russo F. Valacchi M. Zani L. Degl’Innocenti A. Reginato G. Tetrahedron  2002,  58:  7153 
  • 19h Mordini A. Sbaragli L. Valacchi M. Russo F. Reginato G. Chem. Commun.  2002,  778 
  • 20 Sturmer R. Schafer B. Wolfart V. Stahr H. Kazmaier U. Helmchen G. Synthesis  2001,  46 
  • 21 Okada T. Sato H. Tsuji T. Tsushima T. Nakai H. Yoshida T. Matsuura S. Chem. Pharm. Bull.  1993,  41:  132 
  • 22a Hodgson DM. Miles T. Witherington J. Synlett  2002,  310 
  • 22b Hodgson DM. Stent MA. Wilson FX. Org. Lett.  2001,  3:  3401 
  • 23a Correia CRD. de Faria AR. Carvalho ES. Tetrahedron Lett.  1995,  36:  5109 
  • 23b Carpes MJS. Miranda PCML. Correia CRD. Tetrahedron Lett.  1997,  38:  1869 
  • 23c Miranda PCML. Correia CRD. Tetrahedron Lett.  1999,  40:  7735 
  • 23d de Faria AR. Salvador EL. Correia CRD. J. Org. Chem.  2002,  67:  3651 
  • 23e Valle MS. Retailleau P. Correia CRD. Tetrahedron Lett.  2008,  49:  1957 
  • 24a Severino EA. Correia CRD. Org. Lett.  2000,  2:  3039 
  • 24b Carpes MJS. Correia CRD. Synlett  2000,  1037 
  • 24c Severino EA. Costenaro ER. Garcia ALL. Correia CRD. Org. Lett.  2003,  5:  305 
  • 24d Garcia ALL. Correia CRD. Tetrahedron Lett.  2003,  44:  1553 
  • 25a Burgess LE. Gross EKM. Jurka J. Tetrahedron Lett.  1996,  37:  3255 
  • 25b Norton Matos MRP. Afonso CAM. Batey RA. Tetrahedron Lett.  2001,  42:  7007 
  • 25c Sunose M. Anderson KM. Orpen AG. Gallagher T. Macdonald SJF. Tetrahedron Lett.  1998,  39:  8885 
  • 25d Sugisaki CH. Carroll PJ. Correia CRD. Tetrahedron Lett.  1998,  39:  3413 
  • 25e Pohlit AM. Correia CRD. Heterocycles  1997,  45:  2321 
  • 25f Le Corre L. Kizirian J.-C. Levraud C. Boucher J.-L. Bonnet V. Dhimane H. Org. Biomol. Chem.  2008,  6:  3388 
  • 26a For a review on directing effects, see: Henbest HB. Wilson RAL. J. Chem. Soc.  1959,  1958 
  • 26b Hoveyda AH. Evans DA. Fu GC. Chem. Rev.  1993,  93:  1307 
  • 27 Palucki M. Pospisil PJ. Zhang W. Jacobsen EN. J. Am. Chem. Soc.  1994,  116:  9333 
  • 28a Speckamp WN. Hiemstra H. Tetrahedron  1985,  41:  4367 
  • 28b Yamamoto Y. Nakada T. Nemoto H. J. Am. Chem. Soc.  1992,  114:  121 
  • 28c Martin SF. Corbett JW. Synthesis  1992,  55 
  • 28d Tanaka K. Sawanishi H. Tetrahedron  1998,  54:  10029 
  • 28e Katoh T. Nagata Y. Kobayashi Y. Arai K. Minami J. Terashima S. Tetrahedron  1994,  50:  6221 
  • 28f Seebach D. Renaud P. Helv. Chim. Acta  1986,  69:  1704 
  • 28g Dhudshia B. Cooper BFT. Macdonald CLB. Thadani AN. Chem. Commun.  2009,  463 
  • For excellent reviews on the chemistry of N-acyliminium ions, see:
  • 29a Hiemstra H. Speckamp WN. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.1047 
  • 29b Speckamp WN. Moolenaar MJ. Tetrahedron  2000,  56:  3817 
  • For related reactions on α-alkoxy amides, see, for example:
  • 30a Huang PQ. Wang SL. Ye JL. Ruan YP. Huang YQ. Zheng H. Gao JX. Tetrahedron  1998,  54:  12547 
  • 30b Zhou X. Liu W.-J. Ye J.-L. Huang P.-Q. Tetrahedron  2007,  63:  6346 
  • 30c Yoda H. Shirakawa K. Takabe K. Chem. Lett.  1991,  489 
  • 30d Sengoku T. Suzuki T. Kakimoto T. Takahashi M. Yoda H. Tetrahedron  2009,  65:  2415 
  • 33 Ungureanu I. Bologa C. Chayer S. Mann A. Tetrahedron Lett.  1999,  40:  5315 
18

Enecarbamate 13
A Schlenk tube was charged with a solution of pyrrolidine 5 (1.07 g, 2.5 mmol) in dry THF (6 mL) under a nitrogen atmosphere. The solution was cooled at -78 ˚C and TMEDA (0.75 mL, 5.0 mmol) and a cyclohexane solution of s-BuLi (1.4 M, 3.6 mL, 5.0 mmol) were added. The mixture was stirred at -78 ˚C for 1 h, then added with dry MeOH (1 mL) and left to warm to r.t. The reaction was quenched with H2O (6 mL) and the mixture extracted with Et2O (3 × 10 mL). The collected organic phases were dried over Na2SO4, then filtered and concentrated to afford crude 13 (1.10 g, 100%, 1.5:1 mixture of two rotamers in CDCl3), which was used without further purification due to the easy elimination of the silyloxy group under acidic conditions. ¹H NMR (200 MHz, CDCl3): δ = 6.81 and 6.67 (d, J = 3.6 Hz, 1 H), 5.03 (m, 2 H), 3.80-3.46 (m, 2 H), 1.48 (s, 9 H), 0.91 and 0.89 (s, 9 H), 0.09 and 0.08 (s, 6 H). ¹³C NMR (50 MHz, CDCl3): δ = 151.5 (s), 150.9 (s), 132.4 (d), 109.8 (d), 80.4 (s), 73.6 (d), 72.5 (d), 54.6 (t), 54.1 (t), 28.2 (q), 25.7 (q), 25.6 (q), 18.0 (s), 17.9 (s), -4.6 (q), -4.7 (q).
Enecarbamate 14
A Schlenk tube was charged with a solution of pyrrolidine 13 (1.0 g, 3.3 mmol) in dry THF (6 mL) under a nitrogen atmosphere. The solution was added with TBAF in dry THF (1.1 M, 6.2 mL, 7.26 mmol). The resulting solution was left under stirring at r.t. for 1 h. The mixture was quenched with H2O (6 mL), extracted with Et2O (3 ¥ 10 mL), and the collected organic phases were dried over Na2SO4. After filtration, the solution was concentrated and purified by column chromatography (PE-EtOAc-concd NH3, 4:0.9:1) to afford compound 14 (0.372 g, 62%, 1:1 mixture of two rotamers in CDCl3). [α]D ²5 -167.7 (c 1.9, CHCl3). ¹H NMR (200 MHz, CDCl3): δ = 6.78 and 6.66 (s, 1 H), 5.14 (br s, 1 H), 4.84 (ddd, J = 7.8, 3.0, 2.8 Hz, 1 H), 3.75-3.53 (m, 2 H), 2.75 (br s, 1 H), 1.43 (s, 9 H). ¹³C NMR (50 MHz, CDCl3): δ = 151.6 (s), 151.0 (s), 133.0 (d), 109.7 (d), 80.7 (s), 72.7 (d), 71.7 (d), 54.5 (t), 54.0 (t), 28.2 (q).

31

For cyanation of a related substrate, see ref. 25e.

32

Synthesis of Pyrrolidines 22-24 - General Procedure
A Schlenk tube was charged with a solution of pyrrolidine 21 (80 mg, 0.17 mmol) in dry CH2Cl2 (6 mL) under a nitrogen atmosphere. The solution was cooled at -78 ˚C and the appropriate silylated reagent (trimethylsilylcyanide (0.045 mL, 0.34 mmol), trimethylsilylazide (0.043 mL, 0.34 mmol), or allyltrimethylsilane (0.054 mL, 0.34 mmol) and BF3˙OEt2 (0.030 mL, 0.24 mmol) were added. The mixture was left at -78 ˚C under stirring for 1.5-2 h. The solution was quenched with sat. Na2CO3 (1 mL) and left to warm to r.t., then was extracted with CH2Cl2 (3 × 3 mL), and the collected organic phases were dried over Na2SO4. After filtration and concentration, the crude material was purified by column chromatography (PE-Et2O, 15:1).
Compound 22: 52% yield, R f  = 0.11, white solid, mp 97-99 ˚C. ¹H NMR (400 MHz, CDCl3, 2:1 mixture of two rotamers): δ = 4.55 and 4.38 (d, J = 6.8 Hz, 1 H), 4.16-4.11 (m, 2 H), 3.44 (d, J = 12.0 Hz, 1 H), 3.36 (dd, J = 11.6, 3.6 Hz, 1 H), 1.51 and 1.47 (s, 9 H), 0.95-0.92 (m, 18 H), 0.16-0.09 (m, 12 H). ¹³C NMR (100 MHz, CDCl3): δ = 153.6 (s), 153.3 (s), 116.0 (s), 81.8 (s), 81.1 (s), 73.5 (d), 73.0 (d), 72.4 (d), 71.4 (d), 52.6 (d), 51.7 (d), 50.2 (t), 49.7 (t), 28.3 (q), 25.7 (q), 25.6 (q), 18.1 (s), -4.4 (q), -4.6 (q), -4.8 (q).
Compound 23: 56% yield, R f  = 0.47, colorless oil. ¹H NMR (400 MHz, CDCl3, 2:1 mixture of two rotamers): δ = 5.18 and 5.05 (d, J = 2.0 Hz, 1 H), 4.20-4.16 (m, 1 H), 3.81 (dd, J = 3.4, 2.0 Hz, 1 H), 3.50 and 3.44 (dd, J = 9.9, 6.3 Hz, 1 H), 3.36 and 3.28 (dd, J = 9.9, 7.5 Hz, 1 H), 1.52 and 1.50 (s, 9 H), 0.90 and 0.89 (s, 18 H), 0.09 (s, 12 H). ¹³C NMR (100 MHz, CDCl3): δ = 154.2 (s), 81.3 (s), 80.6 (s), 78.9 (d), 78.7 (d), 77.4 (d), 76.6 (d), 70.7 (d), 70.2 (d), 49.9 (t), 49.4 (t), 28.2 (q), 25.8 (q), 25.6 (q), 18.1 (s), 18.0 (s), -4.5 (q), -4.7 (q), -4.9 (q), -5.1 (q).
Compound 24: 77% yield, R f  = 0.26, colorless oil. ¹H NMR (400 MHz, CDCl3, 2:1 mixture of two rotamers): δ = 6.10-5.79 (m, 1 H), 4.98 (d, J = 16.2 Hz, 1 H), 4.92 (d, J = 9.2 Hz, 1 H), 4.08-4.04 (m, 1 H), 4.02-3.98 (m. 1 H), 3.83 and 3.68 (q, J = 5.8 Hz, 1 H), 3.52 (dd, J = 12.0, 4.8 Hz, 1 H), 3.27 and 3.20 (d, J = 12.0 Hz, 1 H), 2.74-2.35 (m, 2 H), 1.45 (s, 9 H), 0.91-0.89 (s, 18 H), 0.08-0.05 (s, 12 H). ¹³C NMR (100 MHz, CDCl3): δ = 155.0 (s), 138.0 (d), 137.7 (d), 115.1 (t), 79.6 (s), 73.8 (d), 73.5 (d), 71.8 (d), 59.5 (d), 59.2 (d), 52.5 (t), 35.0 (t), 28.4 (q), 26.0 (q), 25.8 (q), 18.3 (s), 18.0 (s), -4.6 (q), -4.8 (q).