References and Notes
For asymmetric intermolecular alkylation
via memory of chirality, see:
1a
Kawabata T.
Yahiro K.
Fuji K.
J.
Am. Chem. Soc.
1991,
113:
9694
1b
Kawabata T.
Wirth T.
Yahiro K.
Suzuki H.
Fuji K.
J. Am. Chem.
Soc.
1994,
116:
10809
1c
Kawabata T.
Suzuki H.
Nagae Y.
Fuji K.
Angew. Chem. Int. Ed.
2000,
39:
2155
For asymmetric intramolecular alkylation
via memory of chirality, see:
2a
Kawabata T.
Kawakami S.
Majumdar S.
J.
Am. Chem. Soc.
2003,
125:
13012
2b
Kawabata T.
Matsuda S.
Kawakami S.
Monguchi D.
Moriyama K.
J.
Am. Chem. Soc.
2006,
128:
15394
2c
Kawabata T.
Moriyama K.
Kawakami S.
Tsubaki K.
J. Am. Chem. Soc.
2008,
130:
4153
3 For asymmetric intramolecular conjugate
addition via memory of chirality, see: Kawabata T.
Majuumdar S.
Tsubaki K.
Monguchi D.
Org. Biomol. Chem.
2005,
3:
1609
4 For Dieckmann condensation via memory
of chirality, see: Watanabe T.
Kawabata T.
Heterocycles
2008,
76:
1593
For recent reviews on asymmetric
synthesis via memory of chirality see:
5a
Kawabata T.
Fuji K.
Top. Stereochem.
2003,
53:
175
5b
Zhao H.
Hsu D.
Carlier PR.
Synthesis
2005,
1
5c
Kawabata T.
Asymmetric
Synthesis and Application of α-Amino Acids
ACS
Symposium Series 1009:
American Chemical Society;
Washington
DC:
2009.
p.31-56
6
Basel Y.
Hassner A.
J. Org. Chem.
2000,
65:
6368
7
Brunner M.
Saarenketo P.
Straub T.
Rissanen K.
Koskinen AMP.
Eur. J. Org. Chem.
2004,
3879
8 The most stable conformer B was generated by a molecular modeling
search (MCMM 50,000 steps) with OPLS 2005 force field and GB/SA
solvation model for chloroform using MacroModel (V. 9.0); see Supporting
Information.
9 The possibility that the present asymmetric
migration proceeds without the intervention of an axially chiral
enolate cannot be excluded. Alternative route may involve a concerted
SEi process. This route was excluded by the experimental
results in the case of asymmetric cyclization shown in Scheme
[5]
(refs. 2a and 2c). By analogy,
we assume that the present asymmetric carbonyl migration would proceed
through an axially chiral enolate intermediate.
10a
Mermerian AH.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
4050
10b
Shaw SA.
Aleman P.
Vedejs E.
J. Am. Chem. Soc.
2003,
125:
13368
10c
Shaw SA.
Aleman P.
Christy J.
Kampf JW.
Va P.
Vedejs E.
J. Am. Chem. Soc.
2006,
128:
925
11a
Takayama E.
Nanbara S.
Nakai T.
Chem. Lett.
2006,
35:
478
11b
Takayama E.
Kimura H.
Angew. Chem. Int. Ed.
2007,
46:
8869
12
One-Pot Procedure
for 2a (Table 2): A solution of Boc2O (105 mg, 0.48
mmol) in DMF (1.0 mL) was added to a solution of 3 (R = Bn;
120 mg, 0.40 mmol) and DMAP (5.0 mg, 0.04 mmol) in DMF (4.1 mL)
at r.t. After being stirred for 30 min, the mixture was cooled to -60 ˚C,
KHMDS (0.47 M in THF solution, 1.3 mL, 0.60 mmol) was added dropwise to
the mixture. The reaction mixture was stirred at -60 ˚C
for 3 h and then poured into sat. aq NH4Cl and extracted
with EtOAc. The combined organic layers were washed with sat. aq
NaHCO3 and brine, dried over Na2SO4,
filtered and evaporated in vacuo. The residue was purified by preparative TLC
(SiO2, hexane-EtOAc = 9:1) to give
(R)-2a (82 mg, 53%,
98% ee) as a colorless oil.
HPLC conditions: Daicel
Chiralpak OJ-H; hexane-i-PrOH, 9:1;
flow 0.5 mL/min; t
R = 8.4
(R), t
R = 9.9
(S); [α]D
²5 +2.6 (c = 2.1, CDCl3). ¹H
NMR (600 MHz, CDCl3): δ = 7.33-7.38 (m,
5 H), 7.17-7.24 (m, 5 H), 5.91 (ddt, J = 15.1,
9.6, 5.5 Hz, 1 H), 5.20 (d, J = 15.1
Hz, 1 H), 5.16 (ABq, J
AB = 12.3
Hz, Δν = 10.6 Hz, 2 H), 5.08 (d, J = 9.6 Hz, 1 H), 3.22-3.29
(m, 1 H), 3.26 (ABq, J
AB = 14.4
Hz, Δν = 18.4 Hz, 2 H), 3.19 (dd, J = 13.1, 5.5 Hz, 1 H), 1.29
(s, 9 H). ¹³C NMR (150 MHz, CDCl3): δ = 170.1,
168.5, 135.9, 135.7, 135.2, 130.3, 128.9, 128.53, 128.49, 127.9,
126.8, 116.1, 82.6, 70.8, 67.1, 45.9, 36.8, 27.7. IR (CDCl3):
1728, 1456, 1369, 1190, 1151 cm-¹. ESI-MS
(+): m/z = 418 [M + Na],
340, 278, 204. HRMS:
m/z calcd for C24H29NO4Na:
418.1994; found: 418.1953.