Synlett 2011(3): 365-368  
DOI: 10.1055/s-0030-1259505
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Regioselective Ring-Opening Reaction of Unsymmetrical 2,3-Diaryl Epoxides via Catalytic Hydrogenolysis with Pd(0)EnCatTM

Tetsutaro Kimachi*, Hiroyo Nagata, Yusuke Kobayashi, Kaori Takahashi, Eri Torii, Motoharu Ju-ichi
School of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshienkyubancho, Nishinomiya 663-8179, Hyogo, Japan
Fax: +81(798)459952; e-Mail: tkimachi@mukogawa-u.ac.jp;
Further Information

Publication History

Received 28 October 2010
Publication Date:
25 January 2011 (online)

Abstract

A series of unsymmetrical 2,3-diaryl epoxides were hydrogenated under transfer-hydrogenation conditions using the polyurea-encapsulated palladium catalyst [Pd(0)EnCatTM]. The position of the cleaved C-O bond was determined by ¹H NMR analysis of the ring-opened products derived from the epoxide, in which one of the two benzylic methyne protons is deuterated. The ratio of ring-opened products of the unsymmetrically substituted 2,3-diaryl epoxides was affected by the degree of the steric bulkiness on the ­aromatic ring.

    References and Notes

  • 1 Kinoshita H. Ihoriya A. Ju-ichi M. Kimachi T. Synlett  2010,  2330 
  • Alcoholysis:
  • 2a Tamami B. Iranpoor N. Razaei R. Synth. Commun.  2004,  34:  2789 
  • 2b Iranpoor N. Salehi P. Synthesis  1994,  1152 
  • 2c Surendra K. Krishnaveni NS. Nageswar YVD. Rao KR. J. Org. Chem.  2003,  68:  4994  
  • Aminolysis:
  • 2d Murai T. Sano H. Kawai H. Aso H. Shibahara F. J. Org. Chem.  2005,  70:  8148 
  • 2e Mirkhani V. Tangestaninejad S. Yadollahi B. Alipanah L. Catal. Lett.  2005,  101:  93 
  • 2f Lupi V. Albanese D. Landini D. Scaletti D. Penso M. Tetrahedron  2004,  60:  11709 
  • 2g Sundararajan G. Vijayakrishna K. Varghese B. Tetrahedron Lett.  2004,  45:  8253  
  • Azidolysis:
  • 2h Marie J.-C. Courillon C. Malarcia M. Synlett  2002,  553: 
  • Reductive ring opening
  • 2i Ley SV. Mitchell C. Pears D. Ramarao C. Yu J.-Q. Zhou W. Org. Lett.  2003,  5:  4665  
  • Lewis acid catalyzed ring opening of epoxides:
  • 2j Blum SA. Rivera VA. Ruck RT. Michael FE. Bergman RG. Organometallics  2005,  24:  1647 
  • 2k Asandei AD. Moran IW. J. Am. Chem. Soc.  2004,  126:  15932 
  • 3 Ley SV. Mitchell C. Pears D. Ramarao C. Yu J.-Q. Zhou W. Org. Lett.  2003,  5:  4665 
  • 4 Blasio ND. Lopardo MT. Lupattelli P. Eur. J. Org. Chem.  2009,  938 
  • 5a Shirota O. Pathak V. Sekita S. Satake M. Nagashima Y. Hirayama Y. Hakamata Y. Hayashi T. J. Nat. Prod.  2003,  66:  1128 
  • 5b Watanabe M. Date M. Kawanishi K. Hori T. Furukawa S. Chem. Pharm. Bull.  1991,  39:  41 
  • 5c Watanabe M. Kawanishi K. Akiyoshi R. Furukawa S. Chem. Pharm. Bull.  1991,  39:  3123 
  • 6a Kimachi T. Kinoshita H. Kusaka K. Takeuchi Y. Aoe M. Ju-ichi M. Synlett  2005,  842 
  • 6b

    All new compounds show analytical and spectral (¹H NMR, ¹³C NMR, HRMS) data consistent with the depicted structure.

  • 8 Gaunt MJ. Yu J. Spencer JB. J. Org. Chem.  1998,  63:  4172 
7

Typical Procedure for the Reductive Ring-Opening Reaction of the Epoxides 4-11 and Deuterated Epoxides (4- d -11- d )
Pd(0) catalyst [Pd(0)EnCatTM, 50 mg, 0.02 mmol] was added to a solution of the epoxide (0.38 mmol) in EtOAc (0.75 mL) at r.t. under argon atmosphere. The mixture was cooled to 0 ˚C, Et3N (0.28 mL, 4 mmol) and formic acid (0.07 mL, 4 mmoL) were added. After 5 h stirring at r.t., the mixture was worked up as follows. The resulting Pd(0) was filtered off, then filtrate was concentrated under reduced pressure. The remaining residue was purified by flash chromatography to afford the product.
¹ H NMR Spectra of the Ring-Opened Products 12-21
Product 12: ¹H NMR (400 MHz, CDCl3): δ = 1.65 (s, 1 H), 2.35 (s, 3 H), 2.91-3.06 (m, 2 H), 4.85-4.89 (m, 1 H), 7.10-7.36 (m, 9 H).
Product 13: ¹H NMR (400 MHz, CDCl3): δ = 1.90 (s, 1 H), 3.00 (m, 2 H), 3.80 (s, 3 H), 4.84 (dd, 1 H, J = 5.9, 7.3 Hz), 6.85-6.89 (m, 2 H), 7.16-7.34 (m, 7 H).
Product 14: ¹H NMR (500 MHz, CDCl3): δ = 1.11 (m, 3 H), 1.22 (m, 3 H), 2.97 (dd, 1 H, J = 8.2, 13.7 Hz), 3.03 (dd, 1 H, J = 5.0, 13.7 Hz), 3.25 (m, 2 H), 3.53 (m, 2 H), 4.91 (dd, 1 H, J = 5.0, 8.2 Hz), 7.16-7.36 (m, 9 H).
Product 15: ¹H NMR (400 MHz, CDCl3): δ = 1.60 (s, 9 H), 2.97 (dd, 1 H, J = 8.4, 13.9 Hz), 3.04 (dd, 1 H, J = 4.8, 13.9 Hz), 4.95 (m, 1 H), 7.16-7.18 (m, 2 H), 7.22-7.32 (m, 3 H), 7.38 (d, 2 H, J = 8.4 Hz), 7.95 (d, 2 H, J = 8.4 Hz).
Product 16: ¹H NMR (400 MHz, CDCl3): δ = 1.32 (s, 9 H), 1.89 (s, 1 H), 2.97 (dd, 1 H, J = 10.2, 13.5 Hz), 3.04 (dd, 1 H, J = 4.4, 13.5 Hz), 4.86 (m, 1 H), 7.20-7.30 (m, 5 H), 7.31 (d, 2 H, J = 8.4 Hz), 7.37 (d, 2 H, J = 8.4 Hz).
Product 17: ¹H NMR (400 MHz, CDCl3): δ = 2.1 (d, 1 H, J = 3.0 Hz), 2.94 (dd, 1 H, J = 8.4, 13.5 Hz), 3.03 (dd, 1 H, J = 4.8, 13.5 Hz), 4.95 (m, 1 H), 7.14-7.36 (m, 5 H), 7.43 (d, 2 H, J = 8.0 Hz), 7.61 (d, 2 H, J = 8.0 Hz).
Product 18: ¹H NMR (400 MHz, CDCl3): δ = 1.98 (m, 1 H), 3.05 (m, 1 H), 3.13 (m, 1 H), 4.90 (m, 1 H), 7.24-7.36 (m, 5 H), 7.27 (d, 2 H, J = 8.3 Hz), 7.54 (d, 2 H, J = 8.3 Hz).
Product 19: ¹H NMR (500 MHz, CDCl3): δ = 3.07 (d, 2 H, J = 6.4 Hz), 5.00 (t, 1 H, J = 6.4 Hz), 7.27 (d, 2 H, J = 8.2 Hz), 7.42 (d, 2 H, J = 8.2 Hz), 7.57 (d, 2 H, J = 8.2 Hz), 7.60 (d, 2 H, J = 8.2 Hz).
Product 20: ¹H NMR (400 MHz, CDCl3): δ = 2.89 (dd, 1 H, J = 8.4, 13.9 Hz), 2.99 (dd, 1 H, J = 4.8, 13.5 Hz), 3.79 (s, 3 H), 4.91 (m, 1 H), 6.84 (d, 2 H, J = 8.4 Hz), 7.08 (d, 2 H, J = 8.4 Hz), 7.45 (d, 2 H, J = 8.1 Hz), 7.59 (d, 2 H, J = 8.1 Hz).
Product 21: ¹H NMR (400 MHz, CDCl3): δ = 3.04-3.08 (m, 2 H), 3.81 (s, 3 H), 4.86 (m, 1 H), 6.87 (d, 2 H, J = 8.8 Hz), 7.22-7.28 (m, 4 H), 7.52 (d, 2 H, J = 8.1 Hz).
¹ H NMR Spectra of Deuterated Ring-Opened Products 12- d -21- d
Product 12-d: ¹H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H), 2.94-3.01 (m, 1 H), 4.83-4.85 (m, 1 H), 7.06-7.36 (m, 10 H).
Product 13-d: ¹H NMR (400 MHz, CDCl3): δ = 3.00 (s, 2 H), 3.80 (s, 3 H), 6.87 (d, 2 H, J = 8.8 Hz), 7.26 (d, 2 H, J = 8.8 Hz), 7.16-7.30 (m, 5 H).
Product 14-d: ¹H NMR (400 MHz, CDCl3): δ = 1.14 (m, 3 H), 1.22 (m, 3 H), 2.05 (s, 1 H), 3.02 (d, 1 H, J = 4.4 Hz), 3.27 (m, 2 H), 3.53 (m, 2 H), 4.92 (d, 1 H, J = 4.4 Hz), 7.17-7.38 (m, 9 H).
Product 15-d: ¹H NMR (400 MHz, CDCl3): δ = 1.60 (s, 9 H), 1.99 (d, 1 H, J = 3.2 Hz), 3.02 (d, 1 H, J = 4.6 Hz), 4.95 (m, 1 H), 7.15-7.18 (m, 2 H), 7.22-7.32 (m, 3 H), 7.38 (d, 2 H, J = 8.2 Hz), 7.95 (d, 2 H, J = 8.2 Hz).
Product 16-d: ¹H NMR (400 MHz, CDCl3): δ = 1.31 (s, 9 H), 1.89 (s, 1 H), 3.04 (d, 1 H, J = 4.4 Hz), 4.86 (d, 1 H, J = 4.4 Hz), 7.20-7.30 (m, 5 H), 7.31 (d, 2 H, J = 8.4 Hz), 7.37 (d, 2 H, J = 8.4 Hz).
Product 17-d: ¹H NMR (400 MHz, CDCl3): δ = 2.07 (d, 1 H, J = 3.2 Hz), 3.01 (m, 1 H), 4.95 (m, 1 H), 7.27-7.40 (m, 5 H), 7.43 (d, 2 H, J = 8.3 Hz), 7.62 (d, 2 H, J = 8.3 Hz).
Product 18-d: ¹H NMR (400 MHz, CDCl3): δ = 2.00 (br s, 1 H), 3.05 (m, 1 H), 3.10 (m, 1 H), 7.37 (m, 5 H), 7.30 (d, 2 H, J = 8.3 Hz), 7.55 (d, 2 H, J = 8.3 Hz).
Product 19-d: ¹H NMR (400 MHz, CDCl3): δ = 1.96 (s, 1 H), 3.07 (s, 2 H), 7.27 (d, 2 H, J = 8.1 Hz), 7.42 (d, 2 H, J = 8.1 Hz), 7.56-7.65 (m, 4 H).
Product 20-d: ¹H NMR (400 MHz, CDCl3): δ = 1.98 (d, 1 H, J = 3.3 Hz), 2.98 (m, 1 H), 3.79 (s, 3 H), 4.91 (s, 1 H), 6.85 (d, 2 H, J = 8.1 Hz), 7.08 (d, 2 H, J = 8.1 Hz), 7.45 (d, 2 H, J = 8.4 Hz), 7.59 (d, 2 H, J = 8.4 Hz).
Product 21-d: ¹H NMR (400 MHz, CDCl3): δ = 1.81 (s, 1 H), 3.06 (dd, 2 H, J = 13.5, 23.8 Hz), 3.81 (s, 3 H), 6.88 (d, 2 H, J = 8.8 Hz), 7.24 (d, 2 H, J = 8.8 Hz), 7.27 (d, 2 H, J = 8.1 Hz), 7.53 (d, 2 H, J = 8.1 Hz).