Subscribe to RSS
DOI: 10.1055/s-0030-1259526
Influence of Geminal Disubstitution on Samarium Diiodide Induced Reductive Cyclizations of γ-Aryl Ketones
Publication History
Publication Date:
02 February 2011 (online)
Abstract
Geminal disubstitution at the alkyl chain of γ-aryl ketones significantly influences the efficacy of samarium diiodide induced cyclizations providing significantly higher yields. β,β-Disubstituted aryl ketones 11a-e and γ,γ-disubstituted aryl ketone 14 could be converted into the corresponding hexahydronaphthalene derivatives in good yields. On the other hand, α,α-disubstituted ketone 9 only gave the secondary alcohol 10 along with recovered starting material. Aryl ketones containing substituents with heteroatoms could also be cyclized in high yields and substrates such as 11d with sterically demanding cyclic substituents efficiently afforded spiro compounds.
Key words
samarium diiodide - cyclization - geminal disubstitution - γ-aryl ketone - hexahydronaphthalene
- For selected reviews, see:
-
1a
Molander GA.Harris CR. Chem. Rev. 1996, 96: 307 -
1b
Khan FA.Zimmer R.
J. Prakt. Chem. 1997, 339: 101 -
1c
Molander GA.Harris CR. Tetrahedron 1998, 54: 3321 -
1d
Krief A.Laval A.-M. Chem. Rev. 1999, 99: 745 -
1e
Steel PG. J. Chem. Soc., Perkin Trans. 1 2001, 2727 -
1f
Kagan HB. Tetrahedron 2003, 59: 10351 -
1g
Edmonds DJ.Johnston D.Procter DJ. Chem. Rev. 2004, 104: 3371 -
1h
Berndt M.Gross S.Hölemann A.Reissig H.-U. Synlett 2004, 422 -
1i
Gopalaiah K.Kagan HB. New J. Chem. 2008, 32: 607 -
1j
Rudkin IM.Miller LC.Procter DJ. Organomet. Chem. 2008, 34: 19 -
1k
Nicolaou KC.Ellery SP.Chen JS. Angew. Chem. Int. Ed. 2009, 48: 7140 ; Angew. Chem. 2009, 121, 7276 -
1l
Procter DJ.Flowers RA.Skrydstrup T. Organic Synthesis Using Samarium Diiodide: A Practical Guide RSC; Cambridge: 2010. -
1m
Beemelmanns C.Reissig H.-U. Chem. Soc. Rev. 2011, 40: in press; DOI: 10.1039/C0CS00116C -
2a
Dinesh CU.Reissig H.-U. Angew. Chem. Int. Ed. 1999, 38: 789 ; Angew. Chem. 1999, 111, 874 -
2b
Nandanan E.Dinesh CU.Reissig H.-U. Tetrahedron 2000, 56: 4267 -
2c
Berndt M.Reissig H.-U. Synlett 2001, 1290 -
2d
Ohno H.Maeda S.-i.Okumura M.Wakayama R.Tanaka T. Chem. Commun. 2002, 316 -
2e
Ohno H.Wakayama R.Maeda S.-i.Iwasaki H.Okumura M.Iwata C.Mikamiyama H.Tanaka T. J. Org. Chem. 2003, 68: 5909 -
2f
Ohno H.Okumura M.Maeda S.-i.Iwasaki H.Wakayama R.Tanaka T. J. Org. Chem. 2003, 68: 7722 -
2g
Wefelscheid UK.Berndt M.Reissig H.-U. Eur. J. Org. Chem. 2008, 3635 - For related ketyl-aryl couplings, see:
-
3a
Kise N.Suzumoto T.Shono T. J. Org. Chem. 1994, 59: 1407 -
3b
Schmalz H.-G.Siegel S.Bats JW. Angew. Chem., Int. Ed. Engl. 1995, 34: 2383 ; Angew. Chem. 1995, 107, 2597 -
3c
Shiue J.-S.Lin M.-H.Fang J.-M. J. Org. Chem. 1997, 62: 4643 -
3d
Heimann J.Schäfer HJ.Fröhlich R.Wibbeling B. Eur. J. Org. Chem. 2003, 2919 -
4a
Berndt M.Hlobilova I.Reissig H.-U. Org. Lett. 2004, 6: 957 -
4b
Aulenta F.Berndt M.Brüdgam I.Hartl H.Sörgel S.Reissig H.-U. Chem. Eur. J. 2007, 13: 6047 -
4c
Wefelscheid UK.Reissig H.-U. Adv. Synth. Catal. 2008, 350: 65 -
4d
Wefelscheid UK.Reissig H.-U. Tetrahedron: Asymmetry 2010, 21: 1601 -
5a
Gross S.Reissig H.-U. Synlett 2002, 2027 -
5b
Kumaran RS.Brüdgam I.Reissig H.-U. Synlett 2008, 991 -
6a
Gross S.Reissig H.-U. Org. Lett. 2003, 5: 4305 -
6b
Blot V.Reissig H.-U. Synlett 2006, 2763 -
6c
Blot V.Reissig H.-U. Eur. J. Org. Chem. 2006, 4989 -
6d
Beemelmanns C.Reissig H.-U. Org. Biomol. Chem. 2009, 7: 4475 -
6e
Beemelmanns C.Blot V.Gross S.Lentz D.Reissig H.-U. Eur. J. Org. Chem. 2010, 2716 -
6f
Beemelmanns C.Reissig H.-U. Angew. Chem. Int. Ed. 2010, 49: 8021 ; Angew. Chem. 2010, 122, 8195 -
6g For a related electrochemical
cyclization, see:
Kise N.Mano T.Sakurai T. Org. Lett. 2008, 10: 4617 - 7
Aulenta F.Wefelscheid UK.Brüdgam I.Reissig H.-U. Eur. J. Org. Chem. 2008, 2325 -
8a For
a recent review, see:
Jung ME.Piizzi G. Chem. Rev. 2005, 105: 1735 -
8b
Mitchell L.Parkinson JA.Percy JM.Singh K. J. Org. Chem. 2008, 73: 2389 -
8c
Karaman R. Tetrahedron Lett. 2009, 50: 6083 -
8d
Kim H.Park Y.Hong J. Angew. Chem. Int. Ed. 2009, 48: 7577 ; Angew. Chem. 2009, 121, 7713 - 9
Berndt M. Dissertation Freie Universität Berlin; Germany: 2003. - 10 Compound 9 was
synthesized in a two-step procedure: 1. ethyl isobutyrate, phenethyl
iodide, LDA, HMPA, THF, -78 ˚C;
2. TMSCH2Li, pentane, 0 ˚C then MeOH,
55% (2 steps). For the second step, see:
Demuth M. Helv. Chim. Acta 1978, 61: 3136 - 12
Mahmud SA.Ansell MF. J. Chem. Soc., Perkin Trans. 1 1973, 2789
References and Notes
Conjugate addition of a benzyl cuprate to mesityl oxide furnished compound 11a in low yield: BnMgCl, CuCN, BF3˙OEt2, mesityl oxide, Et2O, -78 ˚C, 15%.
13The samarium ketyl is very likely in equilibrium with ketone 9 which was re-isolated. Reduction of the ketyl and subsequent protonation furnishes 10.
14General Procedure for Samarium Diiodide Induced Cyclizations of Aryl Ketones HMPA (18 equiv) was added to a previously prepared stock solution of SmI2 in THF (0.1 M, 3 equiv) under argon, and the solution was stirred for 20 min. During this time the solution turned from dark blue to dark violet. In a separate flask, the substrate (1 equiv) and t-BuOH (2 equiv) were dissolved in THF (10 mL) under argon. Argon was bubbled through the solution for 20 min. The substrate solution was then transferred with a syringe to the samarium diiodide solution. The mixture was stirred at r.t. until the color changed from violet to grey. Saturated aq NaHCO3 solution was added, the organic layer was separated, and the aqueous layer was extracted with Et2O (3×). The combined organic layers were washed with H2O and brine, dried with MgSO4, and the solvent was removed under reduced pressure to give the crude product, which still contained small amounts of HMPA. Flash chromatography on Al2O3 (activity grade 3) yielded the cyclization products.
15
Cyclization of
11a
According to the general procedure, the SmI2 solution
in THF (15.8 mL, 1.58 mmol), HMPA (1.66 mL, 9.47 mmol), 11a (0.100 g, 0.53 mmol), and t-BuOH (0.078 g, 1.05 mmol) afforded
after purification by flash chromatography (hexane-EtOAc,
9:1) compounds 12a and 13a as
a 83:17 mixture in 75% yield (76 mg).
Spectroscopic
Data for (1
S
*,8a
S
*)-1,3,3-Trimethyl-1,2,3,4,8,8a-hexahydronaphthalen-1-ol (12a)
¹H NMR
(700 MHz, CDCl3): δ = 0.93,
0.96. 1.26* (3 s, 3 H each, CH3), 1.28* (br
s, 1 H, OH), 1.50 (d, J = 13.4
Hz, 1 H, 2-H), 1.62 (dd, J = 2.2,
13.4 Hz, 1 H, 2-H), 1.88 (dd, J = 2.2, 12.6
Hz, 1 H, 4-H), 2.03 (d, J = 12.6
Hz, 1 H, 4-H), 2.23 (dd, J = 3.5,
13.0 Hz, 1 H, 8a-H), 2.49 (tdd, J = 3.1,
13.0, 19.5 Hz, 1 H, 8-H), 2.57 (m, 1 H, 8-H), 5.54 (tddd, J = 0.9, 3.1, 8.6,
9.5 Hz, 1 H, 7-H), 5.58-5.60 (m, 1 H, 5-H), 5.67 (dddd, J = 1.3, 3.1,
5.4, 9.5 Hz, 1 H, 6-H) ppm; * overlapping signals. ¹³C
NMR (176 MHz, CDCl3): δ = 22.4
(t, C-8), 23.2, 26.6 (2 q, CH3), 32.8 (s, C-3) 33.9 (q,
CH3), 46.9 (d, C-8a), 48.7 (t, C-4), 55.9 (t, C-2), 74.9
(s, C-1), 118.9, 122.2, 123.5 (3 d, C-5, C-6, C-7), 136.5 (s, C-4a)
ppm.
Spectroscopic Data for (1
S
*,8a
S
*)-1,3,3-Trimethyl-1,2,3,4,6,8a-hexahydronaphthalen-1-ol (13a)
¹H NMR
(700 MHz, CDCl3): δ = 0.90,
0.98, 1.12 (3 s, 3 H each, CH3), 1.52 (br s, 1 H, OH),
1.59 (d, J = 13.2
Hz, 1 H, 2-H), 1.68 (dd, J = 2.2,
13.2 Hz, 1 H, 2-H), 1.87, 1.92 (AB part of an ABX system, J
AB = 13.0
Hz, J
BX = 2.2
Hz, 1 H each, 4-H), 2.62 (mc, 1 H, 8a-H), 2.67-2.71
(m, 2 H, 6-H), 5.47 (X part, mc, 1 H, 5-H), 5.85 (mc,
2 H, 7-H, 8-H) ppm. ¹³C NMR (176 MHz,
CDCl3): δ = 24.9,
26.2 (2 q, CH3), 27.0 (t, C-6), 32.2 (s, C-3), 33.9 (q,
CH3), 48.7 (t, C-4), 49.0 (d, C-8a), 55.3 (t, C-2), 74.5
(s, C-1), 120.1 (d, C-5), 124.3, 125.6 (2 d, C-7, C-8), 141.6 (s,
C-4a) ppm. Data from mixture: IR (film): ν = 3365
(OH), 2950-2830 (CH), 1630 (C=C) cm-¹.
HRMS (EI, 80 eV, 60 ˚C): m/z calcd
for C13H20O [M]+:
192.1514; found: 192.1513. Anal. Calcd for C13H20O
(192.1): C, 81.20; H, 10.48; found: C, 80.93; H, 10.31.
Cyclization of 14
According to
the general procedure, the SmI2 solution in THF (15.8
mL, 1.58 mmol), HMPA (1.66 mL, 9.47 mmol), 14 (0.100
g, 0.53 mmol), and t-BuOH (0.078 g, 1.05
mmol) afforded after purification by flash chromatography (hexane-EtOAc,
9:1) compounds 15, 16,
and 17 as a 74:19:7 mixture in 70% yield
(71 mg). Separation by HPLC yielded pure samples.
Analytical Data for (1
S
*,8a
S
*)-1,4,4-Trimethyl-1,2,3,4,8,8a-hexahydronaphthalen-1-ol (15)
Colorless solid; mp 50-52 ˚C. ¹H
NMR (700 MHz, CDCl3): δ = 1.09,
1.14, 1.17 (3 s, 3 H each, CH3), 1.35 (dt, J = 4.5, 13.6
Hz, 1 H, 3-H), 1.46* (br s, 1 H, OH), 1.47* (ddd, J = 2.9, 4.4,
13.6 Hz, 1 H, 3-H), 1.60 (ddd, J = 2.9,
4.4, 13.6 Hz, 1 H, 2-H), 1.77 (dt, J = 4.5,
13.6 Hz, 1 H, 2-H), 2.47 (tdd, J = 3.1,
13.8, 20.0 Hz, 1 H, 8-H), 2.61-2.67 (m, 2 H, 8-H, 8a-H),
5.52 (dddd, J = 0.8,
3.3, 5.0, 9.0 Hz, 1 H, 7-H), 5.64 (br d, J = 5.7
Hz, 1 H, 5-H), 5.69 (dddd, J = 1.4,
3.0, 5.7, 9.0 Hz, 1 H, 6-H) ppm; * overlapping signals. ¹³C
NMR (176 MHz, CDCl3): δ = 20.4
(q, CH3), 22.7 (t, C-8), 26.2, 28.5 (2 q, CH3),
35.9 (s, C-4), 38.5, 38.8 (2 t, C-3, C-2), 42.4 (d, C-8a), 75.6
(s, C-1), 115.2 (d, C-5), 122.2 (d, C-6), 123.1 (d, C-7), 145.0
(s, C-4a) ppm. IR (film): ν = 3375
(OH), 2970-2865 (=CH, CH), 1665 (C=C) cm-¹.
Analytical Data for (1
S
*,8a
S
*)-1,4,4-Trimethyl-1,2,3,4,6,8a-hexahydronaphthalen-1-ol (16)
¹H NMR
(700 MHz, CDCl3): δ = 1.03,
1.08. 1.09 (3 s, 3 H each, CH3), 1.32 (dt, J = 4.2, 13.8
Hz, 1 H, 3-H), 1.43 (ddd, J = 2.9,
4.4, 13.8 Hz, 1 H, 3-H), 1.55 (br s, 1 H, OH), 1.63 (ddd, J = 2.9, 4.2,
12.9 Hz, 1 H, 2-H), 1.86 (ddd, J = 2.9,
4.2, 12.9 Hz, 1 H, 2-H), 2.66-2.70 (m, 2 H, 6-H), 2.97-3.01
(m, 1 H, 8a-H), 5.47-5.51 (m, 1 H, 5-H), 5.81-5.85
(m, 1 H, 7-H), 5.87 (tdd, J = 1.8,
3.3, 10.2 Hz, 1 H, 8-H) ppm. ¹³C NMR (176
MHz, CDCl3): δ = 21.5,
25.7 (2 q, CH3), 27.1 (t, C-6), 28.7 (q, CH3),
34.4 (s, C-4), 37.8, 38.0 (2 t, C-2, C-3), 44.7 (d, C-8a), 71.0
(s, C-1), 116.2 (d, C-5), 124.5, 125.4 (2 d,
C-8, C-7),
142.2 (s, C-4a) ppm. IR (film): ν = 3410
(OH), 2960-2810 (=CH, CH), 1650 (C=C)
cm-¹. HRMS (ESI-TOF-MS): m/z calcd for C13H20ONa [M + Na]+:
215.1406; found: 215.1405.
Analytical
Data for 1,4,4-Trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol (17)
Colorless solid; mp 68-70 ˚C. ¹H
NMR (700 MHz, CDCl3): δ = 1.30,
1.31, 1.55 (3 s, 3 H each, CH3), 1.68 (br s, 1 H, OH),
1.71-1.83, 1.96-1.99 (2 m, 4 H, 2-H, 3-H), 7.18-7.24 (m,
2 H, Ar), 7.29-7.31 (m, 1 H, Ar), 7.58-7.59 (m,
1 H, Ar) ppm. ¹³C NMR (176 MHz, CDCl3): δ = 30.8,
31.5, 31.7 (3 q, CH3), 34.06 (s, C-4), 35.9, 36.1 (2
t, CH2), 71.0 (s, C-1), 126.0, 126.1, 126.4, 127.4 (4
d, Ar), 142.0, 144.7 (2 s, Ar) ppm. IR (film): ν = 3385
(OH), 2960-2860 (=CH, CH), 1660 (C=C)
cm-¹. HRMS (ESI-TOF-MS): m/z calcd for C13H18ONa [M + Na]+:
213.1250; found: 213.1250.
At the moment it is more likely that the isolation of isomeric mixtures is the result of an unselective kinetically controlled protonation. Since equilibration experiments with the products isolated are so far not fully conclusive, further investigation of this problem is required.