Synlett 2011(4): 582-584  
DOI: 10.1055/s-0030-1259529
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

TMSCl-Promoted Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine

Hideo Tanaka*a, Tomotake Yanoa, Kazuma Kobayashia, Syogo Kamenouea, Manabu Kuroboshia, Hiromu Kawakubo*b
a The Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan
Fax: +81(86)2518079; e-Mail: tanaka95@cc.okayama-u.ac.jp;
b API Department, Asahi Kasei Chemicals Corporation, Kanda Jinbocho 1-105, Chiyoda-ku, Tokyo 101-8101, Japan
Weitere Informationen

Publikationsverlauf

Received 23 November 2010
Publikationsdatum:
08. Februar 2011 (online)

Abstract

Direct reductive transformation of triphenylphosphine oxide to triphenylphosphine was performed successfully by electrolysis with TMSCl in an acetonitrile/Bu4NBr/(Zn anode)-(Pt cathode)/undivided cell/constant current electrolysis system. A plausible ECEC mechanism involving the formation of silylated phosphorus radical is proposed.

    References and Notes

  • 1a Maercker A. In Organic Reactions   Vol. 14:  John Wiley and Sons; New York: 1965.  Chap. 3.
  • 1b Boutagy J. Thomas R. Chem. Rev.  1974,  74:  87 
  • 2 Hughes DL. In Organic Reactions   Vol. 42:  John Wiley and Sons; New York: 1992.  Chap. 2.
  • 3a Mukaiyama T. Angew. Chem.  1976,  88:  111 
  • 3b Corey EJ. Nicolaou KC. J. Am. Chem. Soc.  1974,  96:  5614 
  • 4a Appel R. Angew. Chem., Int. Ed. Engl.  1975,  14:  801 
  • 4b Calzada JG. Hooz J. Org. Synth.  1974,  54:  63 
  • 5 Staudinger H. Meyer J. Helv. Chim. Acta  1919,  2:  635 
  • 6a Fritzsche H. Hasserodt U. Korte F. Chem. Ber.  1965,  98:  171 
  • 6b Dziuba K. Flis A. Szmigielska A. Pietrusiewicz KM. Tetrahedron: Asymmetry  2010,  21:  1401 
  • 6c Barta K. Francio G. Leitner W. Lloyd-Jones GC. Shepperson IR. Adv. Synth. Catal.  2008,  350:  2013 
  • 6d Huang Z.-G. Jiang B. Cheng K.-J. Phosphorus, Sulfur Silicon Relat. Elem.  2007,  182:  1609 
  • 6e El Abed R. Aloui F. Genet J.-P. Ben HB. Marinetti A.
    J. Organomet. Chem.  2007,  692:  1156 
  • 6f Coumbe T. Lawrence NJ. Muhammad F. Tetrahedron Lett.  1994,  35:  625 
  • 6g (HMe2Si)2O/Ti(Oi-Pr)4: Marsi FM. J. Org. Chem.  1974,  39:  265 
  • 6h Petit C. Favre-Reguillon A. Albela B. Bonneviot L. Mignani G. Lemaire M. Organomet.  2009,  28:  6379 
  • 6i Berthod M. Favre-Reguillon A. Mohamad J. Mignani G. Docherty G. Lemaire M. Synlett  2007,  1545 
  • 7a LiAlH4/CeCl3: Horner L. Hoffmann H. Beck P. Chem. Ber.  1958,  91:  1583 
  • 7b MeOTf/LiAlH4: Imamoto T. Tanaka T. Kusumoto T. Chem. Lett.  1985,  1491 
  • 7c AlH3: Imamoto T. Kikuchi S.-I. Miura T. Wada Y. Org. Lett.  2001,  3:  87 
  • 7d NaAlH4/NaAlCl4: Griffin S. Heath L. Wyatt P. Tetrahedron Lett.  1998,  39:  4405 
  • 7e Nelson GE. inventors; US  4507502. DIBAL-H: Chem. Abstr. , 103, 37617
  • 7f Busacca CA. Raju R. Grinberg N. Haddad N. James-Jones P. Lee H. Lorenz JC. Saha A. Senanayake CH. J. Org. Chem.  2008,  73:  1524 
  • 7g Malpass DB, and Yeargin GS. inventors; US  4113783.  ; Chem. Abstr. 1978, 90, 23256
  • 7h Busacca CA. Lorenz JC. Sabila P. Haddad N. Senanyake CH. Org. Synth.  2007,  84:  242 
  • 8 Handa Y. Inanaga J. Yamaguchi M. J. Chem. Soc., Chem Commun.  1989,  298 
  • 9 Mathey F. Maillet R. Tetrahedron Lett.  1980,  21:  2525 
  • 10 Dockner T. Angew. Chem.  1988,  100:  699 
  • 11 Timokhin BV. Kazantseva MV. Blazhev DG. Rokhin AV. Russ. J. Gen. Chem.  2000,  70:  1310 ; Chem. Abstr. 2000, 134, 311265
  • 12a Organic Electrochemistry   4th ed.:  Lund H. Hammerich O. Marcel Dekker; New York: 1991. 
  • 12b Torii S. Electroorganic Reduction Synthesis   Kodansha and Wiley-VCH; Tokyo/Weinheim: 2006. 
  • 12c New Developments in Organic Electrosynthesis   Fuchigami T. CMC; Tokyo: 2004. 
  • 12d Electroorganic Chemistry Kagaku Zokan   Vol. 86:  Osa T. Syono T. Honda K. Kagaku Dojin; Kyoto: 1980. 
  • 13 Griesbach U, Weiskoipf V, and Maase M. inventors; WO  2005/031040. 
  • 14 Yano T. Hoshino M. Kuroboshi M. Tanaka H. Synlett  2010,  801 
  • 15 Yano T. Kuroboshi M. Tanaka H. Tetrahedron Lett.  2010,  51:  698 
16

No appreciable difference in chemical shifts between ³¹P NMR spectra of triphenylphosphine oxide 2 (d = 26.2 ppm in MeCN) and that of a mixture of 2 and TMSCl (1:1) was observed, suggesting that any reactions of 2 with TMSCl would not occur before electrochemical reduction of 2.

17

Though the reaction conditions were not optimized yet, other triarylphosphines such as tris(o-toryl)phosphine, tris(m-toryl)phosphine, and tris(p-toryl)phosphine were obtained from the corresponding phosphine oxides in 58%, 74%, and 78% yield, respectively.