Abstract
Direct reductive transformation of triphenylphosphine oxide to
triphenylphosphine was performed successfully by electrolysis with
TMSCl in an acetonitrile/Bu4 NBr/(Zn
anode)-(Pt cathode)/undivided cell/constant
current electrolysis system. A plausible ECEC mechanism involving
the formation of silylated phosphorus radical is proposed.
Key words
reduction - electron transfer - phosphorus - silicon
References and Notes
1a
Maercker A. In
Organic
Reactions
Vol. 14:
John Wiley and Sons;
New
York:
1965.
Chap. 3.
1b
Boutagy J.
Thomas R.
Chem. Rev.
1974,
74:
87
2
Hughes DL. In
Organic Reactions
Vol. 42:
John
Wiley and Sons;
New York:
1992.
Chap.
2.
3a
Mukaiyama T.
Angew. Chem.
1976,
88:
111
3b
Corey EJ.
Nicolaou KC.
J.
Am. Chem. Soc.
1974,
96:
5614
4a
Appel R.
Angew. Chem., Int. Ed. Engl.
1975,
14:
801
4b
Calzada JG.
Hooz J.
Org. Synth.
1974,
54:
63
5
Staudinger H.
Meyer J.
Helv. Chim. Acta
1919,
2:
635
6a
Fritzsche H.
Hasserodt U.
Korte F.
Chem. Ber.
1965,
98:
171
6b
Dziuba K.
Flis A.
Szmigielska A.
Pietrusiewicz KM.
Tetrahedron:
Asymmetry
2010,
21:
1401
6c
Barta K.
Francio G.
Leitner W.
Lloyd-Jones GC.
Shepperson IR.
Adv. Synth. Catal.
2008,
350:
2013
6d
Huang Z.-G.
Jiang B.
Cheng K.-J.
Phosphorus,
Sulfur Silicon Relat. Elem.
2007,
182:
1609
6e
El Abed R.
Aloui F.
Genet J.-P.
Ben HB.
Marinetti A.
J.
Organomet. Chem.
2007,
692:
1156
6f
Coumbe T.
Lawrence NJ.
Muhammad F.
Tetrahedron
Lett.
1994,
35:
625
6g (HMe2 Si)2 O/Ti(Oi -Pr)4 : Marsi FM.
J. Org. Chem.
1974,
39:
265
6h
Petit C.
Favre-Reguillon A.
Albela B.
Bonneviot L.
Mignani G.
Lemaire M.
Organomet.
2009,
28:
6379
6i
Berthod M.
Favre-Reguillon A.
Mohamad J.
Mignani G.
Docherty G.
Lemaire M.
Synlett
2007,
1545
7a LiAlH4 /CeCl3 : Horner L.
Hoffmann H.
Beck P.
Chem. Ber.
1958,
91:
1583
7b MeOTf/LiAlH4 : Imamoto T.
Tanaka T.
Kusumoto T.
Chem. Lett.
1985,
1491
7c AlH3 : Imamoto T.
Kikuchi S.-I.
Miura T.
Wada Y.
Org. Lett.
2001,
3:
87
7d NaAlH4 /NaAlCl4 : Griffin S.
Heath L.
Wyatt P.
Tetrahedron Lett.
1998,
39:
4405
7e Nelson GE. inventors; US 4507502. DIBAL-H:
Chem. Abstr.
, 103, 37617
7f
Busacca CA.
Raju R.
Grinberg N.
Haddad N.
James-Jones P.
Lee H.
Lorenz JC.
Saha A.
Senanayake CH.
J. Org. Chem.
2008,
73:
1524
7g Malpass DB, and Yeargin GS. inventors; US 4113783.
; Chem. Abstr. 1978 , 90 , 23256
7h
Busacca CA.
Lorenz JC.
Sabila P.
Haddad N.
Senanyake CH.
Org. Synth.
2007,
84:
242
8
Handa Y.
Inanaga J.
Yamaguchi M.
J.
Chem. Soc., Chem Commun.
1989,
298
9
Mathey F.
Maillet R.
Tetrahedron Lett.
1980,
21:
2525
10
Dockner T.
Angew.
Chem.
1988,
100:
699
11
Timokhin BV.
Kazantseva MV.
Blazhev DG.
Rokhin AV.
Russ.
J. Gen. Chem.
2000,
70:
1310 ; Chem. Abstr. 2000 , 134 , 311265
12a
Organic Electrochemistry
4th
ed.:
Lund H.
Hammerich O.
Marcel Dekker;
New York:
1991.
12b
Torii S.
Electroorganic Reduction Synthesis
Kodansha and
Wiley-VCH;
Tokyo/Weinheim:
2006.
12c
New Developments
in Organic Electrosynthesis
Fuchigami T.
CMC;
Tokyo:
2004.
12d
Electroorganic
Chemistry Kagaku Zokan
Vol. 86:
Osa T.
Syono T.
Honda K.
Kagaku Dojin;
Kyoto:
1980.
13 Griesbach U, Weiskoipf V, and Maase M. inventors; WO 2005/031040.
14
Yano T.
Hoshino M.
Kuroboshi M.
Tanaka H.
Synlett
2010,
801
15
Yano T.
Kuroboshi M.
Tanaka H.
Tetrahedron
Lett.
2010,
51:
698
16 No appreciable difference in chemical
shifts between ³¹ P NMR spectra of triphenylphosphine
oxide 2 (d = 26.2 ppm in MeCN)
and that of a mixture of 2 and TMSCl (1:1)
was observed, suggesting that any reactions of 2 with
TMSCl would not occur before electrochemical reduction of 2 .
17 Though the reaction conditions were
not optimized yet, other triarylphosphines such as tris(o -toryl)phosphine, tris(m -toryl)phosphine,
and tris(p -toryl)phosphine were obtained from
the corresponding phosphine oxides in 58%, 74%,
and 78% yield, respectively.