References and Notes
1a
Ito C.
Itoigawa M.
Aizawa K.
Yoshida K.
Ruangrungsi N.
Furukawa H.
J. Nat.
Prod.
2009,
72:
1202
1b
McErlean CSP.
Sperry J.
Blake AJ.
Moody CJ.
Tetrahedron
2007,
63:
10963
1c
Carusso A.
Lancelot J.-C.
El-Kashef H.
Sinicropi MS.
Legay R.
Lesnard A.
Rault S.
Tetrahedron
2009,
65:
10400
1d
Mal D.
Senapathi BK.
Pahari P.
Tetrahedron
2007,
63:
3768
1e
Fousteris MA.
Papakyriakou A.
Koutsourea A.
Manioudaki M.
Lampropoulou E.
Papadimitriou E.
Spyroulias GA.
Nikolaropoulos SS.
J.
Med. Chem.
2008,
51:
1048
1f
Knöll J.
Knölker H.-J.
Tetrahedron
Lett.
2006,
47:
6079
1g
Bergman J.
Pelcman B.
Pure Appl. Chem.
1990,
62:
1967
2
Knölker HJ.
Reddy KR.
Chem.
Rev.
2002,
102:
4303
3a
Stokes BJ.
Jovanović B.
Dong H.
Richert KJ.
Riell RD.
Driver TG.
J. Org. Chem.
2009,
74:
3225
3b
Tsang WCP.
Zheng N.
Buchwald SL.
J. Am. Chem. Soc.
2005,
127:
14560
3c
Liu Z.
Larock RC.
Org. Lett.
2004,
6:
3739
3d
Kong A.
Han X.
Lu X.
Org. Lett.
2006,
8:
1339
3e
Zhao J.
Larock RC.
Org. Lett.
2005,
7:
701
3f
Jean DJSt.
Poon SF.
Schwarzbach JL.
Org. Lett.
2007,
9:
4897
3g
Jordan-Hore JA.
Carin CC.
Gulias M.
Beck EM.
Gaunt MJ.
J. Am. Chem. Soc.
2008,
130:
16184
3h
Kong W.
Fu C.
Ma S.
Chem. Commun.
2009,
4572
4a
Praveen C.
Kumar KH.
Muralidharan D.
Perumal PT.
Tetrahedron
2008,
64:
2369
4b
Praveen C.
Sagayaraj YW.
Perumal PT.
Tetrahedron Lett.
2009,
50:
644
4c
Praveen C.
Kiruthiga P.
Perumal PT.
Synlett
2009,
1990
4d
Praveen C.
Karthikeyan K.
Perumal PT.
Tetrahedron
2009,
65:
9244
4e
Praveen C.
Jegatheesan S.
Perumal PT.
Synlett
2009,
2795
4f
Praveen C.
Kalyanasundaram A.
Perumal PT.
Synlett
2010,
777
4g
Praveen C.
Iyyappan C.
Perumal PT.
Tetrahedron Lett.
2010,
51:
4767
4h
Praveen C.
Dheenkumar P.
Perumal PT.
Bioorg.
Med. Chem. Lett.
2010,
20:
7292
4i
Praveen C.
Parthasarathy K.
Perumal PT.
Synlett
2010,
1635
5a
Hashmi ASK.
Hutchings GJ.
Angew. Chem.
2006,
118:
8064
5b
Hashmi ASK.
Hutchings GJ.
Angew. Chem.
Int. Ed.
2006,
45:
7896
5c
Hashmi ASK.
Rudolph M.
Chem.
Soc. Rev.
2008,
37:
1766
6a
Zhang L.
J. Am. Chem. Soc.
2005,
127:
16804
6b
Ferrer C.
Echavarren AM.
Angew. Chem. Int.
Ed.
2006,
45:
1105
Despite the commercial availability
of some N-alkylindole-2-carboxaldehydes,
we prepared other N-substituted indole-2-carboxaldehydes
in our laboratory using literature procedures, see:
7a
Benincori T.
Marchesi A.
Pilati T.
Ponti A.
Rizzo S.
Sannicolò F.
Chem. Eur. J.
2009,
15:
94
7b
Tsotinis A.
Afroudakis PA.
Davidson K.
Prashar A.
Sugden D.
J.
Med. Chem.
2007,
50:
6436
7c
Sechi M.
Derudas M.
Dallocchio R.
Dessì A.
Bacchi A.
Sannia L.
Carta F.
Palomba M.
Ragab O.
Chan C.
Shoemaker R.
Sei S.
Dayam R.
Neamati N.
J.
Med. Chem.
2004,
47:
5298
7d
Li C.-F.
Liu H.
Liao J.
Cao Y.-J.
Liu X.-P.
Xiao W.-J.
Org. Lett.
2007,
9:
1847
7e
Choshi T.
Sada T.
Fujimoto H.
Nagayama C.
Sugino E.
Hibino S.
J. Org. Chem.
1997,
62:
2535
For the bromination of propargyl
alcohols, see:
8a
Kwong FY.
Lee HW.
Qiu L.
Lam WH.
Li Y.-M.
Kwong HL.
Chan ASC.
Adv. Synth. Catal.
2005,
347:
1750
For the synthetic applicability
of Au/Ag catalytic systems, see:
9a
Johansson MJ.
Gorin DJ.
Staben ST.
Toste FD.
J.
Am. Chem. Soc.
2005,
127:
18002
9b
Enomoto T.
Obika S.
Yasui Y.
Takemoto Y.
Synlett
2008,
1647
9c
Lee JH.
Toste FD.
Angew. Chem. Int. Ed.
2007,
46:
912
9d
Horino Y.
Luzung MR.
Toste FD.
J. Am. Chem. Soc.
2006,
128:
11364
9e
Ito Y.
Sawamura M.
Hayashi T.
J.
Am. Chem. Soc.
1986,
108:
6405
9f
Shi Z.
He C.
J. Am. Chem. Soc.
2004,
126:
5964
9g
Hashmi ASK.
Blanco MC.
Kurpejović E.
Frey W.
Adv.
Synth. Catal.
2006,
348:
709
9h
Hashmi ASK. In Silver
in Organic Chemistry
John Wiley and Sons, Inc.;
Hoboken:
2010.
Chap.
12.
p.357-379
For the use of gold catalysis in
hydroarylation reactions, see:
10a
Reetz MT.
Sommer K.
Eur. J. Org.
Chem.
2003,
3485
10b
Tarselli MA.
Liu A.
Gagné MR.
Tetrahedron
2009,
65:
1785
10c
Shi Z.
He C.
J. Org. Chem.
2004,
69:
3669
10d
Hashmi ASK.
Blanco MC.
Eur.
J. Org. Chem.
2006,
4340
10e
Mamane V.
Hannen P.
Furstner A.
Chem.
Eur. J.
2004,
10:
4556
10f
Hashmi ASK.
Ding L.
Bats JW.
Fischer P.
Frey W.
Chem. Eur. J.
2003,
9:
4339
10g
Hashmi ASK.
Schwarz L.
Choi
J.-H.
Frost TM.
Angew.
Chem. Int. Ed.
2000,
39:
2285 ; Angew. Chem. 2000, 112, 2382
10h
Dyker G.
Muth E.
Hashmi ASK.
Ding L.
Adv. Synth. Catal.
2003,
345:
1247
11
Nishimura Y.
Shiraishi T.
Yamaguchi M.
Tetrahedron Lett.
2008,
49:
3492
12
Typical procedure
for the
Z
-selective
Wittig olefination: To a degassed solution of propargyl ylide 4a (395 mg, 1.2 mmoL) in anhydrous THF
(5 mL) under an N2 atmosphere, was added Me3Ga
(1.0 M in hexane, 1.5 mL, 1.5 mmoL) and the mixture was stirred
for 10 min at 0 ˚C. To this reaction mixture was
added a solution of N-methylindole-2-carboxaldehyde
(3a; 158 mg, 1.00 mmoL) in THF (5 mL) and
stirring was continued for 5 h. After completion of the reaction
as indicated by TLC, the reaction was quenched with ice-cold water
and extracted with EtOAc (3 × 20 mL). The
organic layer was dried over anhydrous sodium sulfate, concentrated
under reduced pressure, and purified by column chromatography over
silica gel (100-200 mesh) to afford the pure Z-isomer (154 mg, 79%) and E-isomer (27 mg, 14%). 1-Methyl-2-[(
Z
)-pent-1-en-3-ynyl]-1
H
-indole (1a′): Brown
paste. IR (neat): 2928, 1733, 1430, 1224, 1119 cm-¹. ¹H
NMR (CDCl3, 500 MHz): δ = 2.21 (s,
3 H, CH3), 3.71 (s, 3 H, NCH3),
5.77 (d, J = 11.4 Hz,
1 H, indolyl-CH=CH),
6.70 (d, J = 11.4 Hz,
1 H, indolyl-CH=CH),
7.14-7.15 (m, 1 H, ArH), 7.21-7.30 (m,
2 H, ArH), 7.55 (s, 1 H, indolyl-C(3)H), 7.69
(d, J = 7.6 Hz,
1 H, ArH). ¹³C NMR (CDCl3,
125 MHz): δ = 5.2, 29.5, 78.9, 95.5, 102.9, 108.5, 109.3,
119.9, 121.2, 122.5, 125.3, 127.8, 128.5, 136.1. MS (EI): m/z = 195 [M+].
Anal. Calcd for C14H13N: C, 86.12; H, 6.71;
N, 7.17. Found: C, 85.98; H, 6.76; N, 7.17. 1-Methyl-2-[(
E
)-pent-1-en-3-ynyl]-1
H
-indole(1a): Black
paste.
IR (neat): 2917, 1735, 1425, 1222, 1123 cm-¹. ¹H
NMR (CDCl3, 500 MHz): δ = 2.08 (s,
3 H, CH3), 3.78 (s, 3 H, NCH3),
6.23 (d, J = 15.3 Hz,
1 H, indolyl-CH=CH),
6.75 (s, 1 H, indolyl-C(3)H), 6.96 (d, J = 16.05 Hz,
1 H, indolyl-CH=CH),
7.12 (t, J = 7.6 Hz,
1 H, ArH), 7.23 (t, J = 7.6 Hz, 1 H,
ArH), 7.28 (d, J = 8.4 Hz,
1 H, ArH), 7.59 (d, J = 7.6 Hz,
1 H, ArH). ¹³C NMR (CDCl3,
125 MHz): δ = 4.7, 29.8, 79.3, 89.5, 99.3, 109.3,
110.4, 120.1, 120.7, 122.2, 127.8, 128.5, 137.4, 138.3. MS (EI): m/z = 195 [M+].
Anal. Calcd for C14H13N: C, 86.12; H, 6.71;
N, 7.17. Found: C, 86.25; H, 6.65; N, 7.10
13
Typical procedure
for the carbocyclization of (
Z
)-(2-enynyl) indoles: To an air-dried Schlenk
flask under N2 atmosphere was added 5 mol% AuCl(Ph3P)
and 5 mol% AgSbF6, followed by nitromethane
(1 mL) and the mixture was stirred for 15 min at room temperature.
A solution of 5a (1.0 mmoL) in nitromethane
(2 mL) was added and the mixture was stirred at 60 ˚C.
After completion of the reaction as indicated by TLC, the reaction
was quenched in water and extracted with EtOAc (3 × 20 mL).
The organic layer was dried with anhydrous Na2SO4 and
concentrated under reduced pressure. The crude residue was purified
by column chromatography to afford pure 4,9-dimethyl-carbazole (2a) as a colorless solid. Mp 105-106 ˚C
(Lit.¹6 105-105.5 ˚C).
IR (KBr): 3055, 3025, 2952, 2928, 2855, 1625, 1599, 1560, 1467,
1420, 1132 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.97 (s,
3 H, Ar-CH3), 3.89 (s, 3 H, NCH3),
7.09-7.13 (m, 1 H, ArH), 7.30-7.35 (m,
2 H, ArH), 7.45-7.50 (m, 1 H, ArH), 7.55-7.59
(m, 1 H, ArH), 8.25-8.29 (m, 1 H, ArH). ¹³C
NMR (125 MHz, CDCl3): δ = 20.9, 29.1,
106.2, 108.4, 119.0, 120.7, 121.5, 122.5, 123.6, 125.2, 125.6, 133.6,
141.1, 141.2. MS (EI): m/z = 195 [M+].
Anal. Calcd for C14H13N: C, 86.12; H, 6.70;
N, 7.08. Found: C, 85.95; H, 6.75; 7.20
14
Hashmi ASK.
Salathé R.
Frey W.
Eur. J. Org. Chem.
2007,
1648
15a
Hashmi ASK.
Angew. Chem.
2010,
122:
5360
15b
Hashmi ASK.
Angew. Chem. Int. Ed.
2010,
49:
5232
16
Hoffmann D.
Rathkamp G.
Nesnow S.
Anal.
Chem.
1969,
41:
1256