RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259539
Enantioselective Synthesis of Planar Chiral Paracyclophanes with Short ansa Chains and Structure of Strained Dioxa[7]paracyclophane
Publikationsverlauf
Publikationsdatum:
08. Februar 2011 (online)
Abstract
The first enantioselective synthesis of planar chiral [7] and [8]paracyclophanes has been achieved by the cationic rhodium(I)-(S)-H8-BINAP complex catalyzed [2+2+2] cycloaddition. Planar chiral [9]paracyclophanes were also synthesized by the same method. The first X-ray crystallographic analysis of the strained dioxa[7]paracyclophane revealed the significant deformation of the benzene ring from planarity.
Key words
alkynes - paracyclophanes - planar chirality - rhodium - [2+2+2] cycloaddition
- Supporting Information for this article is available online:
- Supporting Information
- For reviews of cyclophanes, see:
-
1a
Cyclophane Chemistry
Vögtle F. Wiley; Chichester: 1993. -
1b
Modern
Cyclophane Chemistry
Gleiter R.Hopf H. Wiley; Weinheim: 2004. - For a review of cyclophane synthesis, see:
-
2a
Kane VV.De Wolf WH.Bickelhaupt F. Tetrahedron 1994, 50: 4574 - For a review of transition-metal-catalyzed synthesis of compounds with noncentrochirality, see:
-
2b
Ogasawara M.Watanabe S. Synthesis 2009, 1761 -
3a
Kanomata N.Ochiai Y. Tetrahedron Lett. 2001, 42: 1045 -
3b
Kanomata N.Oikawa J. Tetrahedron Lett. 2003, 44: 3625 -
3c
Ueda T.Kanomata N.Machida H. Org. Lett. 2005, 7: 2365 -
3d
Kanomata N.Mishima G.Onozato J. Tetrahedron Lett. 2009, 50: 409 -
4a
Kanda K.Endo K.Shibata T. Org. Lett. 2010, 12: 1980 -
4b
Kanda K.Koike T.Endo K.Shibata T. Chem. Commun. 2009, 1870 -
5a
Tanaka K.Hori T.Osaka T.Noguchi K.Hirano M. Org. Lett. 2007, 9: 4881 -
5b
Hori T.Shibata Y.Tanaka K. Tetrahedron: Asymmetry 2010, 21: 1303 - For our synthesis of achiral cyclophanes by the cationic rhodium(I)-H8-BINAP complex catalyzed [2+2+2] cycloaddition, see:
-
6a
Tanaka K.Shirasaka K. Org. Lett. 2003, 5: 4697 -
6b
Tanaka K.Toyoda K.Wada A.Shirasaka K.Hirano M. Chem. Eur. J. 2005, 11: 1145 -
6c
Tanaka K.Sagae H.Toyoda K.Noguchi K. Eur. J. Org. Chem. 2006, 3575 - For our account of the cationic rhodium(I)-biaryl bisphosphine complex catalyzed [2+2+2] cycloaddition, see:
-
6d
Tanaka K. Synlett 2007, 1977 - For synthesis of achiral cyclophanes by the transition-metal-catalyzed [2+2+2] cycloaddition, see:
-
7a
Moretto AF.Zhang H.-C.Maryanoff BE. J. Am. Chem. Soc. 2001, 123: 3157 -
7b
Boñaga LVR.Zhang H.-C.Gauthier DA.Reddy I.Maryanoff BE. Org. Lett. 2003, 5: 4537 -
7c
Boñaga LVR.Zhang H.-C.Maryanoff BE. Chem. Commun. 2004, 2394 -
7d
Boñaga LVR.Zhang H.-C.Moretto AF.Ye H.Gauthier DA.Li J.Leo GC.Maryanoff BE. J. Am. Chem. Soc. 2005, 127: 3473 -
7e
Kinoshita H.Shinokubo H.Oshima K. J. Am. Chem. Soc. 2003, 125: 7784 -
8a
Tanaka K.Sagae H.Toyoda K.Noguchi K.Hirano M. J. Am. Chem. Soc. 2007, 129: 1522 -
8b
Tanaka K.Sagae H.Toyoda K.Hirano M. Tetrahedron 2008, 64: 831 - 9 Enantioselective synthesis of chiral
tripodal cage compounds by the rhodium-catalyzed [2+2+2] cycloaddition
of branched triynes was reported. See:
Shibata T.Uchiyama T.Endo K. Org. Lett. 2009, 11: 3906 - 14
Pischel I.Nieger M.Archut A.Vögtle F. Tetrahedron 1996, 52: 10043 - 15
Allinger NL.Walter TJ.Newton MG. J. Am. Chem. Soc. 1974, 96: 4588 - 17
Tobe Y.Ueda K.-I.Kakiuchi K.Odaira Y. Tetrahedron 1986, 42: 1851
References and Notes
Lowering the catalyst loading to 2 mol% resulted in poor conversion (at least <50%) of 1a and 2a under the same reaction conditions of Table [¹] .
11Racemization of [9]paracyclophane 3ca was not observed at all in a DCE solution at 80 ˚C for 6 h.
12The corresponding meta- and ortho-cyclophanes were also generated as minor byproducts.
13Employing a more diluted reaction conditions (0.01-0.005 M) did not further improve the yield of 3aa.
16CCDC 801251 [(R)-(+)-3aa] contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
18Although the significant deformation of the benzene ring from planarity was observed in the strained [7]paracyclophane 3aa, the ¹H NMR chemical shifts of the aromatic protons of 3aa appears in the standard aromatic region (δ = 8.28-7.56 ppm). Furthermore, isomerization of 3aa to the corresponding Dewar or prismane isomer was not observed in both solution and solid states at room temper-ature under visible light. These observations indicate that 3aa still possesses stable aromatic structure.