Synlett 2011(4): 539-542  
DOI: 10.1055/s-0030-1259539
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Synthesis of Planar Chiral Paracyclophanes with Short ansa Chains and Structure of Strained Dioxa[7]paracyclophane

Tatsuya Arakia, Daiki Hojoa, Keiichi Noguchib, Ken Tanaka*a
a Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Fax: +81(42)3887037; e-Mail: tanaka-k@cc.tuat.ac.jp;
b Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Weitere Informationen

Publikationsverlauf

Received 27 November 2010
Publikationsdatum:
08. Februar 2011 (online)

Abstract

The first enantioselective synthesis of planar chiral [7] and [8]paracyclophanes has been achieved by the cationic rhodium(I)-(S)-H8-BINAP complex catalyzed [2+2+2] cycloaddition. Planar chiral [9]paracyclophanes were also synthesized by the same method. The first X-ray crystallographic analysis of the strained dioxa[7]paracyclophane revealed the significant deformation of the benzene ring from planarity.

    References and Notes

  • For reviews of cyclophanes, see:
  • 1a Cyclophane Chemistry   Vögtle F. Wiley; Chichester: 1993. 
  • 1b Modern Cyclophane Chemistry   Gleiter R. Hopf H. Wiley; Weinheim: 2004. 
  • For a review of cyclophane synthesis, see:
  • 2a Kane VV. De Wolf WH. Bickelhaupt F. Tetrahedron  1994,  50:  4574 
  • For a review of transition-metal-catalyzed synthesis of compounds with noncentrochirality, see:
  • 2b Ogasawara M. Watanabe S. Synthesis  2009,  1761 
  • 3a Kanomata N. Ochiai Y. Tetrahedron Lett.  2001,  42:  1045 
  • 3b Kanomata N. Oikawa J. Tetrahedron Lett.  2003,  44:  3625 
  • 3c Ueda T. Kanomata N. Machida H. Org. Lett.  2005,  7:  2365 
  • 3d Kanomata N. Mishima G. Onozato J. Tetrahedron Lett.  2009,  50:  409 
  • 4a Kanda K. Endo K. Shibata T. Org. Lett.  2010,  12:  1980 
  • 4b Kanda K. Koike T. Endo K. Shibata T. Chem. Commun.  2009,  1870 
  • 5a Tanaka K. Hori T. Osaka T. Noguchi K. Hirano M. Org. Lett.  2007,  9:  4881 
  • 5b Hori T. Shibata Y. Tanaka K. Tetrahedron: Asymmetry  2010,  21:  1303 
  • For our synthesis of achiral cyclophanes by the cationic rhodium(I)-H8-BINAP complex catalyzed [2+2+2] cycloaddition, see:
  • 6a Tanaka K. Shirasaka K. Org. Lett.  2003,  5:  4697 
  • 6b Tanaka K. Toyoda K. Wada A. Shirasaka K. Hirano M. Chem. Eur. J.  2005,  11:  1145 
  • 6c Tanaka K. Sagae H. Toyoda K. Noguchi K. Eur. J. Org. Chem.  2006,  3575 
  • For our account of the cationic rhodium(I)-biaryl bisphosphine complex catalyzed [2+2+2] cycloaddition, see:
  • 6d Tanaka K. Synlett  2007,  1977 
  • For synthesis of achiral cyclophanes by the transition-metal-catalyzed [2+2+2] cycloaddition, see:
  • 7a Moretto AF. Zhang H.-C. Maryanoff BE. J. Am. Chem. Soc.  2001,  123:  3157 
  • 7b Boñaga LVR. Zhang H.-C. Gauthier DA. Reddy I. Maryanoff BE. Org. Lett.  2003,  5:  4537 
  • 7c Boñaga LVR. Zhang H.-C. Maryanoff BE. Chem. Commun.  2004,  2394 
  • 7d Boñaga LVR. Zhang H.-C. Moretto AF. Ye H. Gauthier DA. Li J. Leo GC. Maryanoff BE. J. Am. Chem. Soc.  2005,  127:  3473 
  • 7e Kinoshita H. Shinokubo H. Oshima K. J. Am. Chem. Soc.  2003,  125:  7784 
  • 8a Tanaka K. Sagae H. Toyoda K. Noguchi K. Hirano M. J. Am. Chem. Soc.  2007,  129:  1522 
  • 8b Tanaka K. Sagae H. Toyoda K. Hirano M. Tetrahedron  2008,  64:  831 
  • 9 Enantioselective synthesis of chiral tripodal cage compounds by the rhodium-catalyzed [2+2+2] cycloaddition of branched triynes was reported. See: Shibata T. Uchiyama T. Endo K. Org. Lett.  2009,  11:  3906 
  • 14 Pischel I. Nieger M. Archut A. Vögtle F. Tetrahedron  1996,  52:  10043 
  • 15 Allinger NL. Walter TJ. Newton MG. J. Am. Chem. Soc.  1974,  96:  4588 
  • 17 Tobe Y. Ueda K.-I. Kakiuchi K. Odaira Y. Tetrahedron  1986,  42:  1851 
10

Lowering the catalyst loading to 2 mol% resulted in poor conversion (at least <50%) of 1a and 2a under the same reaction conditions of Table  [¹] .

11

Racemization of [9]paracyclophane 3ca was not observed at all in a DCE solution at 80 ˚C for 6 h.

12

The corresponding meta- and ortho-cyclophanes were also generated as minor byproducts.

13

Employing a more diluted reaction conditions (0.01-0.005 M) did not further improve the yield of 3aa.

16

CCDC 801251 [(R)-(+)-3aa] contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

18

Although the significant deformation of the benzene ring from planarity was observed in the strained [7]paracyclophane 3aa, the ¹H NMR chemical shifts of the aromatic protons of 3aa appears in the standard aromatic region (δ = 8.28-7.56 ppm). Furthermore, isomerization of 3aa to the corresponding Dewar or prismane isomer was not observed in both solution and solid states at room temper-ature under visible light. These observations indicate that 3aa still possesses stable aromatic structure.