RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259541
Synthesis and Application of Redox-Active Hybrid Catalytic Systems Consisting of Polyanilines and Transition Metals
Publikationsverlauf
Publikationsdatum:
11. Februar 2011 (online)
Abstract
Polyanilines, well-known conductive polymers, serve as a redox mediator for catalysis in organic redox reactions. This account describes the synthesis and application of hybrid catalysts consisting of polyanilines and transition metals or metal nanoparticles.
1 Introduction
2 Hybrid Systems Consisting of Polyanilines and Transition Metals
2.1 Dehydrogenative Oxidation with Polyaniline/Cu(II) or Fe(III) Complex
2.2 Complexation of Polyaniline with Cu(II) and Redox Behavior
2.3 Complexation of Polyaniline with Pd(II) and V(III)
2.4 Palladium-Catalyzed Oxidation Based on Redox of Polyaniline
2.5 Catalytic Aerobic Oxidation of V(IV) by Poly(2-methoxyaniline-5-sulfonic acid)
2.6 Cu(II)-Induced Conformational Change of Poly(2-methoxyaniline-5-sulfonic acid)
3 Hybrid Systems Consisting of Polyanilines and Transition Metals Nanoparticles
3.1 Metal Nanoparticles Synthesis
3.1.1 Direct Reduction Approach
3.1.2 Template Approach
3.1.3 Ligand Exchange Approach
3.1.4 Polyaniline/Pd Nanoparticles
3.2 Polyaniline/Iron Oxide Nanoparticles
3.3 Poly(2-methoxyaniline-5-sulfonic acid)/Au Nanoparticles
4 Summary and Outlook
Key words
catalysis - oxidation - oxygen - polymers - transition metals
- 1
Conn EE.Stumpf PK.Bruening G.Doi RH. In Outlines of Biochemistry 5th ed.: John Wiley & Sons; New York: 1987. -
2a In Handbook of Organic Conductive Molecules and Polymers
Nalwa HS. John Wiley & Sons; New York: 1997. -
2b In Handbook of Conducting Polymers
2nd ed.:
Skotheim TA.Elsenbaumer RL.Reynolds JR. Marcel Dekker; New York: 1998. -
2c In Handbook of Conducting Polymers
3rd
ed.:
Skotheim TA.Reynolds JR. CRC Press; Boca Raton: 2007. -
3a
MacDiarmid AG.Chiang JC.Richter AF.Epstein AJ. Synth. Met. 1987, 18: 285 -
3b
Geniès EM.Boyle A.Lapkowski M.Tsintavis C. Synth. Met. 1990, 36: 139 -
3c
Amano K.Ishikawa H.Kobayashi A.Satoh M.Hasegawa E. Synth. Met. 1994, 62: 229 -
3d
Kang ET.Neoh KG.Tan KL. Prog. Polym. Sci. 1998, 23: 277 -
4a
Hirao T.Higuchi M.Ikeda I.Ohshiro Y. J. Chem. Soc., Chem. Commun. 1993, 2: 194 -
4b
Hirao T.Higuchi M.Ohshiro Y.Ikeda I. Chem. Lett. 1993, 1889 -
4c
Higuchi M.Ikeda I.Hirao T. J. Org. Chem. 1997, 62: 1072 -
5a
Allgeier AM.Mirkin CA. Angew. Chem. Int. Ed. 1998, 37: 894 -
5b
Hirao T. Coord. Chem. Rev. 2002, 226: 81 -
6a
Anand J.Rao PS.Palaniappan S.Sathyanarayana DN. Synth. Met. 1998, 95: 57 -
6b
Kulszewicz-Bajer I.Pron A.Abramowicz J.Jeandey C.Oddou JL.Sobczak JW. Chem. Mater. 1999, 11: 552 -
6c
Genoud F.Kulszewicz-Bajer I.Bedel A.Oddou JL.Jeandey C.Pron A. Chem. Mater. 2000, 12: 744 -
6d
Genoud F.Kulszewicz-Bajer I.Dufour B.Rannou P.Pron A. Synth. Met. 2001, 119: 415 -
6e
Hasik M.Drelinkiewicz A.Wenda E. Synth. Met. 2001, 119: 335 -
6f
Dimitriev OP.Kislyuk VV. Synth. Met. 2002, 132: 87 -
6g
Dimitriev OP. Polym. Bull. 2003, 50: 83 -
6h
Dimitriev OP. Macromolecules 2004, 37: 3388 -
6i
Izumi CMS.Constantino VRL.Ferreira AMC.Temperini MLA. Synth. Met. 2006, 156: 654 -
7a
Ferreira M.Riul A.Wohnrath K.Fonseca FJ.Oliveira ON.Mattoso LHC. Anal. Chem. 2003, 75: 953 -
7b
Anitha G.Subramanian E. Sens. Actuators B 2003, 92: 49 -
7c
Dixit V.Misra SCK.Sharma BS. Sens. Actuators B 2005, 104: 90 -
7d
Virji S.Fowler JD.Baker CO.Huang J.Kaner RB.Weiller BH. Small 2005, 1: 624 -
8a
Das BC.Iqbal J. Tetrahedron Lett. 1997, 38: 1235 -
8b
Punniyamurthy T.Iqbal J. Tetrahedron Lett. 1997, 38: 4463 -
8c
Pielichowski K.Pielichowski J.Iqbal J.Gurtat P. Appl. Catal. A: Gen. 1997, 161: L25 -
8d
Prabhakaran EN.Iqbal J. J. Org. Chem. 1999, 64: 3339 -
8e
Kowalski G.Pielichowski J. Synlett 2002, 2107 -
8f
Nandy JP.Prabhakaran EN.Kumar SK.Kunwar AC.Iqbal J. J. Org. Chem. 2003, 68: 1679 -
8g
Velusamy S.Ahamed M.Punniyamurthy T. Org. Lett. 2004, 6: 4821 -
8h
Reddy SR.Das S.Punniyamurthy T. Tetrahedron Lett. 2004, 45: 3561 -
8i
Choudary BM.Roy M.Roy S.Kantam ML.Sreedhar B.Kumar KV. Adv. Synth. Catal. 2006, 348: 1734 -
9a
Schmid G. Chem. Rev. 1992, 92: 1709 -
9b
Lewis LN. Chem. Rev. 1993, 93: 2693 -
9c In Clusters and Colloids: From Theory to Applications
Schmid G. VCH; New York: 1994. -
9d In Fine Particles: Synthesis Characterization
and Mechanisms of Growth
Sugimoto T. Marcel Dekker; New York: 2000. -
9e In Nanoparticles:Synthesis Characterization
and Applications
Feldheim DL.Foss CA. Marcel Dekker; New York: 2002. -
9f In Nanoscale Materials
Liz-Marzán LM.Kamat P. Kluwer Academic Pub.; Boston: 2003. -
10a
Sheldon RA.Arends IWCE.Brink G.-JT.Dijksman A. Acc. Chem. Res. 2002, 35: 774 -
10b
Berkessel A. Adv. Inorg. Chem. 2006, 58: 1 -
10c
Piera J.Bäckvall J.-E. Angew. Chem. Int. Ed. 2008, 47: 3506 - 11
Higuchi M.Imoda D.Hirao T. Macromolecules 1996, 29: 8277 -
12a
Hirao T.Yamaguchi S.Fukuhara S. Tetrahedron Lett. 1999, 40: 3009 -
12b
Shen X.Moriuchi T.Hirao T. Tetrahedron Lett. 2004, 45: 4733 -
12c
Moriuchi T.Shen X.Hirao T. Tetrahedron 2006, 62: 12237 - 13
Hirao T.Yamaguchi S.Fukuhara S. Synth. Met. 1999, 106: 67 - 14
Hirao T.Fukuhara S.Otomaru Y.Moriuchi T. Synth. Met. 2001, 123: 373 - 15
Hirao T.Murakami T.Ohno M.Ohshiro Y. Chem. Lett. 1989, 18: 785 -
16a
Hirao T.Higuchi M.Hatano B.Ikeda I. Tetrahedron Lett. 1995, 36: 5925 -
16b
Higuchi M.Yamaguchi S.Hirao T. Synlett 1996, 1213 - 17
Shimizu S.Saitoh T.Uzawa M.Yuasa M.Yano K.Maruyama T.Watanabe K. Synth. Met. 1997, 85: 1337 -
18a
Yamamoto T.Ushiro A.Yamaguchi I.Sasaki S. Macromolecules 2003, 36: 7075 -
18b
Strounina EV.Sphepherd R.Kane-Maguire LAP.Wallace GG. Synth. Met. 2003, 135-136: 289 - 19
Amaya T.Koga S.Hirao T. Tetrahedron Lett. 2009, 50: 1032 - 20
Hirao T. Synthetic Transformation via Vanadium-Induced Redox Reactions, In Vanadium: The Versatile MetalKustin K.Pessoa JC.Crans DC. American Chemical Society; Washington DC: 2007. p.2 - 21
Xia Y.Wiesinger JM.MacDiarmid AG. Chem. Mater. 1995, 7: 443 - 22
Amaya T.Saio D.Koga S.Hirao T. Macromolecules 2010, 43: 1175 - 23
Gangopadhyay R.De A. Chem. Mater. 2000, 12: 608 -
24a
Feng W.Sun E.Fujii A.Wu H.Niihara K.Yoshino K. Bull. Chem. Soc. Jpn. 2000, 73: 2627 -
24b
Xia H.Wang Q. Chem. Mater. 2002, 14: 2158 -
24c
Li X.Chen W.Bian C.He J.Xu N.Xue G. Appl. Surf. Sci. 2003, 217: 16 -
24d
Li X.Wang G.Li X.Lu D. Appl. Surf. Sci. 2004, 229: 395 -
25a
Tsakova V.Borissov D. Electrochem. Commun. 2000, 2: 511 -
25b
Sharma S.Nirkhe C.Pethkar S.Athawale AA. Sens. Actuators B 2002, 85: 131 -
25c
Athawale AA.Bhagwat SV. J. Appl. Pol. Sci. 2003, 89: 2412 -
26a
Wang J.Neoh KG.Kang ET. J. Colloid Interface Sci. 2001, 239: 78 -
26b
Sarma TK.Chowdhury D.Paul A.Chattopadhyay A. Chem. Commun. 2002, 1048 -
26c
Chen F.Xu G.-Q.Hor TSA. Mater. Lett. 2003, 57: 3282 -
26d
Tian S.Liu J.Zhu T.Knoll W. Chem. Commun. 2003, 2738 -
26e
Sarma TK.Chattopadhyay A. J. Phys. Chem. A. 2004, 108: 7837 -
26f
Tian S.Liu J.Zhu T.Knoll W. Chem. Mater. 2004, 16: 4103 -
26g
Tseng RJ.Huang J.Ouyang J.Kaner RB.Yang Y. Nano Lett. 2005, 5: 1077 -
26h
Majumdar G.Goswami M.Sarma TK.Paul A.Chattopadhyay A. Langmuir 2005, 21: 1663 - 27
Huang J.Virji S.Weiller BH.Karner RB. Chem. Eur. J. 2004, 10: 1314 -
28a
Drelinkiewicz A.Hasik M.Choczynski M. Mater. Res. Bull. 1998, 33: 739 -
28b
Huang SW.Neoh KG.Kang ET.Han HS.Tan KL. J. Mater. Chem. 1998, 8: 1743 -
28c
Sobczak JW.Kosinski A.Bilinski A.Pielaszek J.Palczewska W. Adv. Mater. Opt. Electron 1998, 8: 295 -
28d
Drelinkiewicz A.Hasik M.Kloc M.
J. Catal. 1999, 186: 123 -
28e
Drelinkiewicz A.Hasik M.Kloc M. Catal. Lett. 2000, 64: 41 -
28f
Drelinkiewicz A.Hasik M. J. Mol. Catal. A: Chem. 2001, 177: 149 -
28g
Houdayer A.Schneider R.Billaud D.Ghanbaja J.Lambert J. Appl. Organometal. Chem. 2005, 19: 1239 -
28h
Gallon BJ.Kojima RW.Kaner RB.Diaconescu PL. Angew. Chem. Int. Ed. 2007, 46: 7251 -
28i
Gao Y.Chen CA.Gau HM.Bailey JA.Akhadov E.Williams D.Wang HL. Chem. Mater. 2008, 20: 2839 -
29a
Drelinkiewicz A.Hasik M.Quillard S.Paluszkiewicz C. J. Mol. Struct. 1999, 511: 205 -
29b
Wang J.Neoh KG.Kang ET. J. Colloid Interface Sci. 2001, 239: 78 -
29c
Wang JG.Neoh KG.Kang ET. Appl. Surf. Sci. 2003, 218: 231 -
29d
Athawale AA.Bhagwat SV.Katre PP.Chandwadkar AJ.Karandikar P. Mater. Lett. 2003, 57: 3889 -
29e
Park JE.Park SG.Koukitu A.Hatozaki O.Oyama N. Synth. Met. 2004, 141: 265 -
29f
Mallick K.Witcomb MJ.Dinsmore A.Scurrell MS. Langmuir 2005, 21: 7964 -
29g
Athawale AA.Bhagwat SV.Katre PP. Sens. Actuators B: Chem. 2006, 114: 263 - 30
Roucoux A.Schulz J.Patin H. Chem. Rev. 2002, 102: 3757 - 31
Amaya T.Saio D.Hirao T. Macromol. Symp. 2008, 270: 88 - 32
Amaya T.Saio D.Hirao T. Tetrahedron Lett. 2007, 48: 2729 - 33
Saio D.Amaya T.Hirao T. J. Inorg. Organomet. Polym. 2009, 19: 79 - 34
Amaya T.Nishina Y.Saio D.Hirao T. Chem. Lett. 2008, 37: 68 - 35
Prati L.Rossi M. J. Catal. 1998, 176: 552 - 36
Saio D.Amaya T.Hirao T. Adv. Synth. Catal. 2010, 352: 2177 - For a highlight and reviews, see:
-
37a
Ishida T.Haruta M. Angew. Chem. Int. Ed. 2007, 46: 7154 -
37b
Corma A.Garcia H. Chem. Soc. Rev. 2008, 37: 2096 -
37c
Matsumoto T.Ueno M.Wang N.Kobayashi S. Chem. Asian J. 2008, 3: 196 - For examples of alcohol oxidation catalyzed by NPs, see:
-
38a
Liu ZJ.Xu Z.Yuan ZY.Lu D.Chen W.Zhou W. Catal. Lett. 2001, 72: 203 -
38b
Kovtun G.Kameneva T.Hladyi S.Starchevsky M.Pazdersky Y.Stolarov I.Vargaftik M.Moiseev I. Adv. Synth. Catal. 2002, 344: 957 -
38c
Comotti M.Pina CD.Matarrese R.Rossi M. Angew. Chem. Int. Ed. 2004, 43: 5812 -
38d
Mori K.Hara T.Mizugaki T.Ebitani K.Kaneda K. J. Am. Chem. Soc. 2004, 126: 10657 -
38e
Hou Z.Theyssen N.Brinkmann A.Leitner W. Angew. Chem. Int. Ed. 2005, 44: 1346 -
38f
Abad A.Conception P.Corma A.Garcia H. Angew. Chem. Int. Ed. 2005, 44: 4066 -
38g
Tsunoyama H.Sakurai H.Negishi Y.Tsukuda T. J. Am. Chem. Soc. 2005, 127: 9374 -
38h
Kwon MS.Kim N.Park CM.Lee JS.Kang KY.Park J. Org. Lett. 2005, 7: 1077 -
38i
Enache DI.Edwards JK.Landon P.Solsona-Espriu B.Carley AF.Herzing AA.Watanabe M.Kiely CJ.Knight DW.Hutchings GJ. Science 2006, 311: 362 -
38j
Kanaoka S.Yagi N.Fukuyama Y.Aoshima S.Tsunoyama H.Tsukuda T.Sakurai H. J. Am. Chem. Soc. 2007, 129: 12060 -
38k
Yamada YMA.Arakawa T.Hoche H.Uozumi Y. Angew. Chem. Int. Ed. 2007, 46: 704 -
38l
Miyamura H.Matsubara R.Miyazaki Y.Kobayashi S. Angew. Chem. Int. Ed. 2007, 46: 4151 -
38m
Wang T.Xiao CX.Yan L.Xu L.Luo J.Shou H.Kou Y.Liu H. Chem. Commun. 2007, 4375 -
38n
Mitsudime T.Mikami Y.Funai H.Mizugaki T.Jitsukawa K.Kaneda K. Angew. Chem. Int. Ed. 2008, 47: 138 -
38o
Su FZ.Liu YM.Wang LC.Cao Y.He HY.Fan KN. Angew. Chem. Int. Ed. 2008, 47: 334 -
38p
Wang X.Kawanami H.Islam NM.Chattergree M.Yokoyama T.Ikushima Y. Chem. Commun. 2008, 4442 -
38q
Karimi B.Esfahani FK. Chem. Commun. 2009, 5555 -
38r
Han BJ.Liu Y.Guo R. Adv. Funct. Mater. 2009, 19: 1112 - Here, the peroxide is not involved due to the absence of molecular oxygen, although the peroxide is well-known to play a role in aerobic oxidation as below, for examples:
-
39a
Comotti M.Pina CD.Falletta E.Rossi M. Adv. Synth. Catal. 2006, 348: 313 -
39b
Okumura M.Haruta M.Kitagawa Y.Yamaguchi K. Gold Bull. 2007, 1: 40 -
39c
Tsunoyama H.Ichikuni N.Sakurai H.Tsukuda T.
J. Am. Chem. Soc. 2009, 131: 7086 - 40
Conte M.Miyamura H.Kobayashi S.Chechik V. J. Am. Chem. Soc. 2009, 131: 7189 - 41
Stiehl JD.Kim TS.McClure SM.Mullins CB. J. Am. Chem. Soc. 2004, 126: 1606