Subscribe to RSS
DOI: 10.1055/s-0030-1259547
Electrophilic Cyclization of Buta-1,3-diynylarenes: Synthesis of Precursors of (Z)-3-Ene-1,5-diyne Systems Fused to Heterocycles
Publication History
Publication Date:
11 February 2011 (online)
Abstract
A simple, convenient, and promising strategy for the synthesis of 2-ethynyl-3-iodo-benzothiophenes, -benzofurans, and -indoles based on electrophilic cyclization of easily available ortho-functionalized (buta-1,3-diynyl)arenes was developed. The unique potential of using these compounds as starting materials for the synthesis of enediyne systems, containing thiophene, furan, and pyrrole units is demonstrated.
Key words
electrophilic cyclization - alkynes - heterocycles - enediynes
-
1a
Larock RC. In Acetylene ChemistryDiederich F.Stang PJ.Tykwinski RR. Wiley-VCH; Weinheim: 2005. p.51-99 -
1b
Mehta S.Larock RC. J. Org. Chem. 2010, 75: 1652 ; and references cited therein -
1c
Manarin F.Roehrs JA.Brandão R.Nogueira CW.Zeni G. Synthesis 2009, 4001 -
1d
Cho C.-H.Neuenswander B.Larock RC. J. Comb. Chem. 2010, 12: 278 -
1e
Worlikar SA.Neuenswander B.Lushington GH.Larock RC. J. Comb. Chem. 2009, 11: 875 -
1f
Cho C.-H.Neuenswander B.Lushington GH.Larock RC. J. Comb. Chem. 2009, 11: 900 -
1g
Manarin F.Roehrs JA.Gay RM.Brandao R.Menezes PH.Nogueira CW.Zeni G. J. Org. Chem. 2009, 74: 2153 -
1h
Mehta S.Waldo JP.Larock RC. J. Org. Chem. 2009, 74: 1141 -
1i
Cho C.-H.Neuenswander B.Lushington GH.Larock RC. J. Comb. Chem. 2008, 10: 941 -
2a
Yue D.Larock RC. J. Org. Chem. 2002, 67: 1905 -
2b
Flynn BL.Verdier-Pinard P.Hamel E. Org. Lett. 2001, 3: 651 -
2c
Yue D.Larock RC. Tetrahedron Lett. 2001, 42: 6011 -
3a
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Moro L. Synlett 1999, 1432 -
3b
Yue D.Yao T.Larock RC.
J. Org. Chem. 2005, 70: 10292 -
3c
Okitsu T.Nakazawa D.Taniguchi R.Wada A. Org. Lett. 2008, 10: 4967 -
4a
Barluenga J.Trincado M.Rubio E.Gonzalez JM. Angew. Chem. Int. Ed. 2003, 42: 2406 -
4b
Amjad M.Knight DW. Tetrahedron Lett. 2004, 45: 539 -
4c
Yue D.Larock RC. Org. Lett. 2004, 6: 1037 -
4d
Yue D.Yao T.Larock RC. J. Org. Chem. 2006, 71: 62 -
5a
Wei S.Coleman RS.Lowary TL. Org. Biomol. Chem. 2009, 7: 3709 -
5b
Santin EP.Khanwalkar H.Voegel J.Collette P.Mauvais P.Gronemeye H.de Lera AR. ChemMedChem 2009, 4: 780 -
5c
Yang L.-Y.Chang C.-F.Huang Y.-C.Lee Y.-J.Hu C.-C.Tseng T.-H. Synthesis 2009, 1175 -
5d
Bang HB.Han SY.Choi DH.Yang DM.Hwang JW.Lee HS.Jun J.-G. Synth. Commun. 2009, 39: 506 -
6a
Zhou Y.Liu W.-J.Ma Y.Wang H.Qi L.Cao Y.Wang J.Pei J. J. Am. Chem. Soc. 2007, 129: 12386 -
6b
Kobayashi T, andHasegawa Y. inventors; US 2005258398. - 7
Barluenga J.Trincado M.Rubio E.Gonzalez JM. Angew. Chem. Int. Ed. 2003, 42: 2406 -
8a
Vinogradova OV.Sorokoumov VN.Vasylevsky SF.Balova IA. Tetrahedron Lett. 2007, 48: 4907 -
8b
Vinogradova OV.Sorokoumov VN.Balova IA. Tetrahedron Lett. 2009, 50: 6358 -
9a
Sahu B.Namboothiri INN.Persky R. Tetrahedron Lett. 2005, 46: 2593 -
9b
Sahu B.Muruganantham R.Namboothiri INN. Eur. J. Org. Chem. 2007, 2477 -
10a
Kim C.-S.Russell KC. J. Org. Chem. 1998, 63: 8229 -
10b
Kumarasinghe ES.Peterson MA.Robins MJ. Tetrahedron Lett. 2000, 41: 8741 - For recent reviews, see:
-
11a
Jones GB.Fouad FS. Curr. Pharm. Des. 2002, 8: 2415 -
11b
Maretina IA.Trofimov BA. Russ. Chem. Rev. 2006, 75: 825 -
11c
Shao R.-G. Curr. Mol. Pharm. 2008, 1: 50 -
12a
Fiandanese V.Bottalico D.Marchese G.Punzi A. Tetrahedron 2008, 64: 53 -
12b
Fiandanese V.Bottalico D.Marchese G.Punzi A. Tetrahedron 2008, 64: 7301 -
13a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 -
13b
Balova IA.Sorokoumov VN.Morozkina SN.Vinogradova OV.Knight DW.Vasilevsky SF. Eur. J. Org. Chem. 2005, 882 -
13c
Liang Y.Tao L.-M.Zhang Y.-H.Li J.-H. Synthesis 2008, 3988 -
15a
Sooloki D.Kennedy VO.Tessier CA.Youngs WJ. Synlett 1990, 427 -
15b
Sooloki D.Bradshaw JD.Tessier CA.Youngs WJ. Organometallics 1994, 13: 451 - 17
Ebata H.Miyazaki E.Yamamoto T.Takimiya K. Org. Lett. 2007, 9: 4499 -
18a
Barluenga J.Fananas-Mastral M.Andina F.Aznar F.Valdes C. Organometallics 2008, 27: 3593 -
18b
Kitagaki S.Katoh K.Ohdachi K.Takahashi Y.Shibata D.Mukai C. J. Org. Chem. 2006, 71: 6908 -
18c
Shvartsberg MS.Vasilevskii SF.Prihod’ko TA. Izv. Acad. Nauk SSSR, Ser. Khim. 1982, 11: 2524
References and Notes
Relative molar ratio of 2d and 2d′ was determined by ¹H NMR analysis of the integral intensity of the signals of acetylene hydrogen atom (δ = 3.74 ppm) of 2d′, TMS group (δ = 0.32 ppm) of 2d and multiplet signals of aromatic hydrogen atoms (δ = 7.38-7.50 and 7.67-7.76 ppm) of 2d and 2d′ (CDCl3, 400 MHz, TMS as reference).
16It was determined by TLC that O-benzyl-2-(dodeca-1,3-diynyl)phenol reacts with ICl in MeCN in similar way giving benzofuran 3i with iodochlorinated triple bond.
19General Procedure for Electrophilic Cyclization of ortho -Buta-1,3-diynylthiophenol, -Aniline, and -Phenol Derivatives Using I 2 To an Ar flushed solution of corresponding o-(buta-1,3-diynyl)arene 1 (0.2 mmol) in MeCN (3 mL), a solution of iodine (0.2 mmol, 0.051 g,) in MeCN (2 mL) was added dropwise. The reaction mixture was stirred at corresponding temperature up to disappearance of starting material according to TLC monitoring (see Table [¹] ). Then, the reaction mixture was diluted with 5% aq solution of Na2S2O3 and extracted with CH2Cl2 (3 × 7 mL). The combined organic layers were washed with H2O, dried over anhyd Na2SO4, and concentrated under reduced pressure to yield the crude product, which was purified by column chromatography on silica gel using pentane (for 2a,b,d,e,g) or cyclohexane-EtOAc (2c,f) as the eluent.
20
Selected Data
for 2c
Mp 73-75 ˚C. IR
(neat): ν = 3124 (OH), 2927
(CH), 2222 (CºC), 1449, 1427, 1370, 1326, 1294, 1243, 1192, 1158, 1062,
1031, 1016, 983, 938, 914, 849, 831, 747, 721, 707 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.01
(t, J = 6.5
Hz, 1 H), 2.83 (t, J = 6.1
Hz, 2 H), 3.88-3.93 (m, 2 H), 7.38-7.46 (m, 2
H), 7.67-7.72 (m, 2 H). ¹³C
NMR (100 MHz, CDCl3): δ = 24.4,
60.8, 87.6, 96.9, 122.1, 125.0, 125.7, 126.1, 126.4, 138.6, 140.3
(two signals are overlapping with each other). MS (EI, 70 eV): m/z (%) = 328.0(100) [M]+,
296.9 (66)
[M - CH2OH]+,
171.0(31), 139.1 (5) 126.1 (14). HRMS:
m/z calcd
for C12H9OSI: 327.9419. Found: 327.9418. Anal. Calcd
for C12H9OSI: C, 43.92; H, 2.76; S, 9.77.
Found: C, 43.85; H, 2.69; S, 9.61.
General Procedure
for the Synthesis of Enediyne Systems 4
To a stirred
solution of 2-ethynyl-3-iodo heterocyle 2 (0.1 mmol)
in DMF (2 mL), the alkyne (0.2 mmol), Pd(PPh3)4 (5 mol%),
Ph3P (10 mol%), and DIPA (0.4 mmol) were added. The
reaction vial was evacuated and flushed with Ar several times. After
that 15 mol% of CuI was added, the reaction vial was then
sealed and flushed with Ar. The reaction mixture was allowed to
stir at 40-50 ˚C (see Table
[²]
) overnight. After cooling,
the reaction mixture was poured into the sat. aq solution of NH4Cl
and extracted with CH2Cl2 (3 × 10 mL).
The combined organic layers were washed two times with H2O,
dried over anhyd Na2SO4, and concentrated
under reduced pressure to yield the crude product, which was purified
by column chromatography on silica gel using pentane (for 4a,c,d,h,i) or cyclohexane-EtOAc (for 4b,e-g) as the eluent.
Selected Data for 4f IR (film on KBr): ν = 3358 (OH), 3061 (CH), 2958 (CH), 2897 (CH), 2223 (CºC), 2149 (CºC), 1458, 1433, 1349, 1317, 1249, 1216, 1160, 1081, 1046, 976, 938, 896, 843, 729, 687, 642 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 0.32 (s, 9 H), 2.02 (t, J = 6.7 Hz, 1 H), 2.83 (t, J = 6.1 Hz, 2 H), 3.85-3.90 (m, 2 H), 7.38-7.45 (m, 2 H), 7.70-7.72 (m, 1 H), 7.83-7.85 (m, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 0.1, 24.5, 60.8, 75.8, 97.5, 97.7, 101.5, 122.0, 122.8, 123.3, 125.1, 126.1, 127.3, 138.0, 138.5. MS-FAB: m/z (%) = 299.1 (61) [M+ + H], 298.1 (100) [M+]. HRMS: m/z calcd for C17H18OSSi: 298.0848; found: 298.0845.