RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259554
Synthesis of 3-Aryl-3-pyrrolines and 3-Arylpyrroles via Spontaneous Rearrangement of N-Sulfinyl 2-Aryl-2-vinylaziridines
Publikationsverlauf
Publikationsdatum:
11. Februar 2011 (online)

Abstract
Addition of vinylmagnesium bromide across chiral α-chloro N-tert-butanesulfinyl ketimines afforded 3-aryl-1-(tert-butanesulfinyl)-3-pyrrolines in high yield (65-91%) after purification by means of recrystallization from diethyl ether. The synthesis of these 3-aryl-3-pyrrolines is explained by initial formation of 2-aryl-2-vinylaziridines which spontaneously rearrange via carbon-nitrogen bond cleavage to form stabilized 1,3-dipolar intermediates which in turn ring closed to 3-pyrrolines.
Key words
aziridines - rearrangement - heterocycles - imines - pyrrolines
- 2a
Lu P. Tetrahedron 2010, 66: 2549Reference Ris Wihthout Link - 2b
Abbaspour Tehrani K.De Kimpe N. Curr. Org. Chem. 2009, 13: 854Reference Ris Wihthout Link - 2c
Padwa A. In Comprehensive Heterocyclic Chemistry III Vol. 1:Katritzky AR.Ramsden CA.Scriven EFV.Taylor RJK. Elsevier; Oxford: 2008. p.1-104Reference Ris Wihthout Link - 2d
Aziridines and
Epoxides in Organic Synthesis
Yudin AK. Wiley-VCH; Weinheim: 2006.Reference Ris Wihthout Link - 2e
Hu XE. Tetrahedron 2004, 60: 2701Reference Ris Wihthout Link - 2f
McCoull W.Davis FA. Synthesis 2000, 1347Reference Ris Wihthout Link - 2g
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599Reference Ris Wihthout Link - 2h
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247Reference Ris Wihthout Link - For some selected publications on the influence of the aziridine substitution pattern on C-N and C-C bond cleavage, see:
- 3a
Paasche A.Arnone M.Fink RF.Schirmeister T.Engels B. J. Org. Chem. 2009, 74: 5244Reference Ris Wihthout Link - 3b
Banks HD. J. Org. Chem. 2010, 75: 2510Reference Ris Wihthout Link - 3c
Dauban P.Malik G. Angew. Chem. Int. Ed. 2009, 48: 9026Reference Ris Wihthout Link - 3d
Gaebert C.Mattay J. Tetrahedron 1997, 53: 14297Reference Ris Wihthout Link - 3e
Colpaert F.Mangelinckx S.Giubellina N.De Kimpe N. Tetrahedron 2011, 67: 1258Reference Ris Wihthout Link - 4
Joule JA.Mills K. Heterocyclic Chemistry 4th ed.: Blackwell Science; Oxford: 2000. p.237 - 5 For a recent review on the asymmetric
synthesis of aziridines, see:
Pellissier H. Tetrahedron 2010, 66: 1509Reference Ris Wihthout Link - 6
Ohno H. In Aziridines and Epoxides in Organic SynthesisYudin AK. Wiley-VCH; Weinheim: 2006. - 7
Olofsson B.Khamrai U.Somfai P. Org. Lett. 2000, 2: 4087 - 8
Aoyama H.Mimura N.Ohno H.Ishii K.Toda A.Tamamura H.Otaka A.Fujii N.Ibuka T. Tetrahedron Lett. 1997, 38: 7383 - 9
Ley SV.Middleton B. Chem. Commun. 1998, 1995 - 10a
Åhman J.Jarevång T.Somfai P. J. Org. Chem. 1996, 61: 8148Reference Ris Wihthout Link - 10b
Åhman J.Somfai P. J. Am. Chem. Soc. 1994, 116: 9781Reference Ris Wihthout Link - 11a
Hassner A.Chau W. Tetrahedron Lett. 1982, 23: 1989Reference Ris Wihthout Link - 11b
Lindström UL.Somfai P. Chem. Eur. J. 2001, 7: 94Reference Ris Wihthout Link - 11c
Fantauzzi S.Gallo E.Caselli A.Piangiolino C.Ragaini F.Re N.Cenini S. Chem. Eur. J. 2009, 15: 1241Reference Ris Wihthout Link - 12a
Atkinson RS.Rees CW. Chem. Commun. 1967, 1232Reference Ris Wihthout Link - 12b
Gilchrist TL.Rees CW.Stanton E. J. Chem. Soc. C 1971, 3036Reference Ris Wihthout Link - 12c
Hudlicky T.Frazier JO.Seoane G.Tiedje M.Seoane A.Kwart LD.Beal C. J. Am. Chem. Soc. 1986, 108: 3755Reference Ris Wihthout Link - 12d
Hudlicky T.Seoane G.Lovelace TC. J. Org. Chem. 1988, 53: 2094Reference Ris Wihthout Link - 12e
Hudlicky T.Sinai-Zingde G.Seoane G. Synth. Commun. 1987, 17: 1155Reference Ris Wihthout Link - 12f
Hirner S.Somfai P. Synlett 2005, 3099Reference Ris Wihthout Link - 12g
Borel D.Gelas-Mialhe Y.Vessière R. Can. J. Org. Chem. 1976, 54: 1590Reference Ris Wihthout Link - 12h
Knight JG.Muldowney MP. Synlett 1995, 949Reference Ris Wihthout Link - 13a
Brichacek M.Lee D.Njardarson JT. Org. Lett. 2008, 10: 5023Reference Ris Wihthout Link - 13b
Li A.-H.Dai L.-X.Hou X.-L.Chen M.-B. J. Org. Chem. 1996, 61: 4641Reference Ris Wihthout Link - 13c
Hortmann AG.Koo J.-Y. J. Org. Chem. 1974, 39: 3781Reference Ris Wihthout Link - 14a
Scheiner P. J. Org. Chem. 1967, 32: 2628Reference Ris Wihthout Link - 14b
Logothetis AL. J. Am. Chem. Soc. 1965, 87: 749Reference Ris Wihthout Link - 14c
Hudlicky T.Reed JW. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.899-970Reference Ris Wihthout Link - 14d
Somfai P.Åhman J. In Targets in Heterocyclic Systems Italian Society of Chemistry; Rome: 1999. p.341Reference Ris Wihthout Link - 15
Mente PG.Heine HW. J. Org. Chem. 1971, 36: 3076 - 16a
Lee Y.Huang H.Sayre LM. J. Am. Chem. Soc. 1996, 118: 7241Reference Ris Wihthout Link - 16b
Wang Y.-X.Mabic S.Castagnoli N. Bioorg. Med. Chem. 1998, 6: 143Reference Ris Wihthout Link - 16c
Williams CH.Lawson J. Biochem. J. 1998, 336: 63Reference Ris Wihthout Link - 16d
Lee Y.Ling K.-Q.Lu X.Silverman RB.Shepard EM.Dooley DM.Sayre LM. J. Am. Chem. Soc. 2002, 124: 12135Reference Ris Wihthout Link - 16e
Zhang Y.Ran C.Zhou G.Sayre LM. Bioorg. Med. Chem. 2007, 15: 1868Reference Ris Wihthout Link - 16f
Pretorius A.Ogunrombi MO.Terre’Blanche G.Castagnoli N.Bergh JJ.Petzer JP. Bioorg. Med. Chem. 2008, 16: 8813Reference Ris Wihthout Link - 17
Ogunrombi MO.Malan SF.Terre’Blanche G.Castagnoli N.Bergh JJ.Petzer JP. Bioorg. Med. Chem. 2008, 16: 2463 - 18a
Bujard M.Briot A.Gouverneur V.Mioskowski C. Tetrahedron Lett. 1999, 40: 8785Reference Ris Wihthout Link - 18b
Dondas HA.Balme G.Clique B.Grigg R.Hodgeson A.Morris J.Sridharan V. Tetrahedron Lett. 2001, 42: 8673Reference Ris Wihthout Link - 18c
Dondas HA.Clique B.Cetinkaya B.Grigg R.Kilner C.Morris J.Sridharan V. Tetrahedron 2005, 61: 10652Reference Ris Wihthout Link - 18d
Verendel JJ.Zhou T.Li J.-Q.Paptchikhine A.Lebedev O.Andersson PG. J. Am. Chem. Soc. 2010, 132: 8880Reference Ris Wihthout Link - 19
Hercouet A.Neu A.Peyronel J.-F.Carboni B. Synlett 2002, 829 - 20
Chang M.-Y.Pai C.-L.Kung Y.-H. Tetrahedron Lett. 2006, 47: 855 - 21
Nicolaou KC.Krasovskiy A.Majumder U.Trépanier VE.Chen DY.-K. J. Am. Chem. Soc. 2009, 131: 3690 - 22a
Davis FA.Reddy RE.Szewczyk JM.Reddy GV.Portonovo PS.Zhang H.Fanelli D.Reddy RT.Zhou P.Caroll PJ. J. Org. Chem. 1997, 62: 2555Reference Ris Wihthout Link - 22b
Zhou P.Chen B.-C.Davis FA. Tetrahedron 2004, 60: 8003 ; and references cited thereinReference Ris Wihthout Link - 23a
Cohan DA.Lui G.Ellman JA. Tetrahedron 1999, 55: 8883Reference Ris Wihthout Link - 23b
Ellman JA.Owens TD.Tang TP. Acc. Chem. Res. 2002, 35: 984Reference Ris Wihthout Link - 23c
Ellman JA. Pure Appl. Chem. 2003, 75: 39Reference Ris Wihthout Link - 23d
Robak MT.Herbage MA.Ellman JA. Chem. Rev. 2010, 110: 3600Reference Ris Wihthout Link - 24a
Ferreira F.Botuha C.Chemla F.Pérez-Luna A. Chem. Soc. Rev. 2009, 38: 1162Reference Ris Wihthout Link - 24b
Morton D.Stockman RA. Tetrahedron 2006, 62: 8869Reference Ris Wihthout Link - 25a
Denolf B.Mangelinckx S.Törnroos KW.De Kimpe N. Org. Lett. 2006, 8: 3129Reference Ris Wihthout Link - 25b
Denolf B.Mangelinckx S.Törnroos KW.De Kimpe N. Org. Lett. 2007, 9: 187Reference Ris Wihthout Link - 25c
Denolf B.Leemans E.De Kimpe N.
J. Org. Chem. 2007, 72: 3211Reference Ris Wihthout Link - 25d
Malkov AV.Stončius S.Kočovský P. Angew. Chem. Int. Ed. 2007, 46: 3722Reference Ris Wihthout Link - 25e
Denolf B.Leemans E.De Kimpe N. J. Org. Chem. 2008, 73: 5662Reference Ris Wihthout Link - 25f
Hodgson DM.Kloesges J.Evans B. Org. Lett. 2008, 10: 2781Reference Ris Wihthout Link - 25g
Chen Q.Li J.Yuan C. Synthesis 2008, 2986Reference Ris Wihthout Link - 25h
Leemans E.Mangelinckx S.De Kimpe N. Synlett 2009, 1265Reference Ris Wihthout Link - 25i
Hodgson DM.Kloesges J.Evans B. Synthesis 2009, 1923Reference Ris Wihthout Link - 25j
Colpaert F.Mangelinckx S.Leemans E.De Kimpe N. Org. Biomol. Chem. 2010, 8: 3251Reference Ris Wihthout Link - 26a
De Kimpe N.Verhé R.De Buyck L.Schamp N. Org. Prep. Proced. Int. 1980, 12: 49Reference Ris Wihthout Link - 26b
De Kimpe N.Verhé R.De Buyck L.Schamp N. J. Org. Chem. 1980, 45: 5319Reference Ris Wihthout Link - 26c
De Kimpe N.Sulmon P.Verhé R.De Buyck L.Schamp N. J. Org. Chem. 1983, 48: 4320Reference Ris Wihthout Link - 27a
Morton D.Pearson D.Field RA.Stockman RA. Org. Lett. 2004, 6: 2377Reference Ris Wihthout Link - 27b
Chigboh K.Morton D.Nadin A.Stockman RA. Tetrahedron Lett. 2008, 49: 4768Reference Ris Wihthout Link - 27c
Morton D.Pearson D.Field RA.Stockman RA. Chem. Commun. 2006, 1833Reference Ris Wihthout Link - 28
Zheng J.-C.Liao W.-W.Sun X.-X.Sun X.-L.Tang Y.Dai L.-X.Deng J.-G. Org. Lett. 2005, 7: 5789 - 29
Kokotos C.Aggarwal VK. Org. Lett. 2007, 9: 2099 - 30
Colyer JT.Andersen NG.Tedrow JS.Soukup TS.Faul MM. J. Org. Chem. 2006, 71: 6859 - 31a
Liu Z.-J.Mei Y.-Q.Liu J.-T. Tetrahedron 2006, 63: 855Reference Ris Wihthout Link - 31b
Sun X.-W.Xu M.-H.Lin G.-Q. Org. Lett. 2006, 8: 4979Reference Ris Wihthout Link - 35a
Campi EM.Jackson WR. J. Organomet. Chem. 1996, 523: 205Reference Ris Wihthout Link - 35b
Tomooka K.Nakazaki A.Nakai T.
J. Am. Chem. Soc. 2000, 122: 408Reference Ris Wihthout Link - 36
Dieter RK.Yu H. Org. Lett. 2001, 3: 3855 - 38a
Donohoe TJ.Orr AJ.Gosby K.Bingham M. Eur. J. Org. Chem. 2005, 1969Reference Ris Wihthout Link - 38b
Beck EM.Hatley R.Gaunt MJ. Angew. Chem. Int. Ed. 2008, 47: 3004Reference Ris Wihthout Link - 38c
Wang X.Lane BS.Sames D. J. Am. Chem. Soc. 2005, 127: 4996Reference Ris Wihthout Link - 38d
Dohi T.Morimoto K.Takenaga N.Goto A.Maruyama A.Kiyono Y.Tohma H.Kita Y. J. Org. Chem. 2007, 72: 109Reference Ris Wihthout Link - 38e
Balasubramanian T.Strachan J.-P.Boyle PD.Lindsey JS. J. Org. Chem. 2000, 65: 7919Reference Ris Wihthout Link - 38f
Kim H.-J.Lindsey JS. J. Org. Chem. 2005, 70: 5475Reference Ris Wihthout Link - 39a
Aponick A.Li C.-Y.Malinge J.Marques EF. Org. Lett. 2009, 11: 4624Reference Ris Wihthout Link - 39b
Join B.Yamamoto T.Itami K. Angew. Chem. Int. Ed. 2009, 48: 3644Reference Ris Wihthout Link - 39c
Du X.Xie X.Liu Y. J. Org. Chem. 2010, 75: 510Reference Ris Wihthout Link - 39d
Wen J.Qin S.Ma L.-F.Dong L.Zhang J.Liu S.-S.Duan Y.-S.Chen S.-Y.Hu C.-W.Yu X.-Q. Org. Lett. 2010, 12: 2694Reference Ris Wihthout Link - 40
Dondas HA.De Kimpe N. Tetrahedron Lett. 2005, 46: 4179 - 42
Gajda T.Zwierzak A. Liebigs Ann. Chem. 1986, 992
References and Notes
Postdoctoral Fellow of the Research Foundation-Flanders (FWO).
32Synthesis of ( R S )- N - tert -Butanesulfinyl 3-Phenyl-3-pyrroline (4a) α-Chloro imine 5a (0.91 mmol) was dissolved in dry CH2Cl2 (10 mL), and the stirred solution was cooled to -78 ˚C. Two equiv of vinylmagnesium bromide (1 M solution in THF, 1.82 mL, 1.82 mmol) were added to the solution, and the reaction mixture was allowed to stir for 2 h at -78 ˚C before being left at -40 ˚C for 4 h. The reaction mixture was quenched at this temperature by the addition of aq NH4Cl (5 mL) and immediately extracted with CH2Cl2 (2 × 10 mL). The organic layers were dried (MgSO4, containing little of K2CO3), filtered, and concentrated. The mixture was purified by means of recrystallization from Et2O to afford the pyrroline 4a in 91% yield. Colorless crystals; mp 55.6 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.50 (9 H, s), 3.39 (1 H, dddd, J = 15.8, 5.5, 4.1, 1.4 Hz), 3.85 (1 H, dddd, J = 15.8, 4.3, 3.3, 3.3 Hz), 4.25 (1 H, dddd, J = 18.4, 3.3, 1.7, 1.7 Hz), 4.40 (1 H, dddd, J = 18.4, 4.4, 4.4, 1.7 Hz), 5.99-6.03 (1 H, m), 7.28-7.37 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 22.1, 36.9, 48.3, 55.4, 112.6, 125.4, 128.1, 128.6, 135.3, 139.1. MS (ES, pos. mode): m/z (%) = 194 (100) [M - t-Bu + 2H]+. IR (KBr): νmax = 1042, 1085, 1364, 1453, 2962 cm-¹. Anal. Calcd for C14H19NOS: C, 67.43; H, 7.68; N, 5.62. Found: C, 67.17; H, 7.84; N, 5.33. [α]D -28.3 (c 1.03, CH2Cl2).
33( R s , S )-1-( tert -Butanesulfinyl)-2-isopropenyl-2-phenylaziridine [( R s ,S )-6] Yellow crystals; mp 54.2 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.21 (9 H, s), 1.65 (3 H, s), 2.11 (1 H, s), 3.23 (1 H, s), 4.95 (1 H, s), 5.14 (1 H, s), 7.26-7.47 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 19.8, 22.8, 30.3, 51.1, 57.4, 112.9, 128.3, 128.5, 129.7, 134.9, 145.4. MS (ES, pos. mode): m/z (%) = 264 (100) [M + H]+. IR (ATR): νmax = 696, 1074, 1447, 2961 cm-¹. Anal. Calcd for C15H21NOS: C, 68.40; H, 8.04; N, 5.32. Found: C, 68.04; H, 8.24; N, 5.12. R f = 0.28 (PE-EtOAc = 3:1). [α]D -394.7 (c 1.03, CH2Cl2).
34
(
R
S
)-
N
-
tert
-Butanesulfinyl 2-Methyl-4-phenyl-3-pyrroline
(9)
Spectroscopic data of the major diastereomer obtained
from the mixture of diastereomers 9 (dr
86:14). Brown oil. ¹H NMR (300 MHz, CDCl3): δ = 1.51
(9 H, s), 1.53 (3 H, d, J = 6.6
Hz), 3.88-3.98 (1 H, m), 4.20 (1 H, ddd, J = 18.4, 3.0,
1.4 Hz), 4.39 (1 H, ddd, J = 18.4,
4.1, 1.9 Hz), 5.70-5.72 (1 H, m), 7.27-7.37 (5
H, m). ¹³C NMR (75 MHz, CDCl3):
δ = 19.2,
24.5, 42.9, 46.2, 60.9, 122.1, 125.7, 127.9, 128.6, 139.3, 139.8.
MS (ES, pos. mode): m/z (%) = 264
(100)
[M + H]+.
IR (ATR): νmax = 694, 1050, 1447, 2926
cm-¹. Anal. Calcd for C15H21NOS:
C, 68.40; H, 8.04; N, 5.32. Found: C, 68.69; H, 7.99; N, 5.49.
Synthesis of (
R
S
)-
N
-(
tert
-Butanesulfinyl) 3-(4-Methoxy-phenyl)pyrrole
(13e)
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.042
g, 0.18 mmol) was dissolved in 1,4-dioxane (10 mL) and the mixture
added dropwise to a solution of (R
S
)-N-(tert-butanesulfinyl)-3-(4-methoxyphenyl)-3-pyrroline
(4e, 0.057 g, 0.20 mmol) in 1,4-dioxane
(10 mL). After stirring for 16 h at r.t., the reaction mixture was
quenched by the addition of a 10% solution of NaHSO3 (5
mL) and immediately extracted with EtOAc (2 × 10
mL). The organic layers were dried (MgSO4), filtered,
and concentrated. The compound was purified by means of column chromatography
to afford (R
S
)-N-(tert-butanesulfinyl)
3-(4-methoxyphenyl)pyrrole (13e, 0.049
g) in 87% yield; black crystals; mp 133.6 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.45 (9 H,
s), 3.82 (3 H, s), 5.86 (1 H, dd, J = 9.9,
1.7 Hz), 6.89-6.93 (2 H, m), 7.22-7.26 (2 H, m),
7.53 (1 H, dd, J = 9.9,
2.2 Hz), 7.68-7.70 (1 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 23.2, 55.4, 62.1,
88.8, 113.8, 114.3, 126.6, 131.4, 139.8, 144.9, 158.2. MS (ES, pos.
mode): m/z (%) = 278
(100) [M + H]+. IR (ATR): νmax = 1187,
1367, 1591, 2928 cm-¹. Anal. Calcd
for C15H19NO2S: C, 64.95; H, 6.90;
N, 5.05. Found: C, 65.07; H, 6.64; N, 4.89. R
f
= 0.29
(PE-EtOAc = 3:1). [α]D = 28.7
(c 0.09, CH2Cl2).
Synthesis of 3,4-Dibromo-3-phenylpyrrolidine
(14)
A solution of (R
S
)-N-(tert-butanesulfinyl)-3-phenyl-3-pyrroline
(4a, 0.1 g, 0.40 mmol) in dry CH2Cl2 (10
mL) was cooled to 0 ˚C and Br2 (1.05
equiv, 0.023 mL, 0.42 mmol) was added dropwise. After stirring for
1 h, Et3N (1 equiv, 0.06 mL, 0.40 mmol) was added, and
the reaction mixture was allowed to stir for another 30 min at r.t.
H2O (10 mL) was added, and the reaction mixture was immediately extracted
with CH2Cl2 (2 × 10
mL). The combined organic layers were dried (MgSO4),
filtered, and concentrated. The compound was purified by means of
column chromatography (R
f
= 0.18;
PE-EtOAc = 3:1) to afford 3,4-dibromo-3-phenylpyrrolidine
(14, 0.04 g) in 33% yield. Light
brown oil. ¹H NMR (300 MHz, CDCl3): δ = 3.73
(1 H, dd, J = 14.9,
3.3 Hz), 3.91-3.99 (1 H, m), 4.35 (1 H, dd, J = 15.1,
4.1 Hz), 4.62 (1 H, dd, J = 15.4,
11.6 Hz), 5.11-5.23 (2 H, m), 7.38-7.48 (5 H,
m). ¹³C NMR (75
MHz, CDCl3): δ = 49.9, 50.8, 53.0,
66.3, 126.2, 129.1, 129.6, 140.0. IR (ATR): νmax = 1156,
1337, 2359, 3271 cm-¹. Anal. Calcd
for C10H11Br2N: C, 39.38; H, 3.64;
N, 4.59. Found: C, 39.03; H, 3.88; N, 4.21.