Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2011(6): 857-861
DOI: 10.1055/s-0030-1259681
DOI: 10.1055/s-0030-1259681
LETTER
© Georg Thieme Verlag
Stuttgart ˙ New York
Selective Synthesis of 2-Aryl-2H- and 4-Aryl-4H-3,5-diformylpyrans from Acetal with Aromatic Aldehydes Catalyzed by Lewis Acids
Further Information
Received
21 January 2011
Publication Date:
22 February 2011 (online)
Publication History
Publication Date:
22 February 2011 (online)
Abstract
A selective method for 2-aryl-2H- and 4-aryl-4H-3,5-diformylpyrans synthesis from 1,1,3,3-tetramethoxypropane and aromatic aldehydes was developed using an FeCl3 catalyst in MeOH-AcOH and an AlCl3 catalyst in DMA-AcOH.
Key words
acetals - pyrans - aldehydes - Lewis acids - catalysis
- Supporting Information for this article is available online:
- Supporting Information
- For recent examples, see:
-
1a
Oepstad CL.Sliwka H.-R.Partali V. Eur. J. Org. Chem. 2010, 435 -
1b
Fan X.Feng D.Qu Y.Zhang X.Wang J.Loiseau PM.Andrei G.Snoeck R.De Clercq E. Bioorg. Med. Chem. Lett. 2010, 20: 809 -
1c
Aljarilla A.Plumet J. Heterocycles 2008, 76: 827 -
1d
Lachance H.Marion O.Hall DG. Tetrahedron Lett. 2008, 49: 6061 -
1e
Salit A.-F.Meyer C.Cossy J. Synlett 2007, 934 -
1f
Li W.Wayne GS.Lallaman JE.Wittenberger SJ. J. Org. Chem. 2006, 71: 1725 -
1g
Donner CD.Gill M.Tewierik LM. Molecules 2004, 9: 498 -
1h
Tanaka S.Isobe M. Tetrahedron 1994, 50: 5633 -
1i
Crawley GC.Briggs MT.Dowell RI.Edwards PN.Hamilton PM.Kingston JF.Oldham K.Waterson D.Whalley DP. J. Med. Chem. 1993, 36: 295 -
2a
Zhang X.-M.Tu Y.-Q.Jiang Y.-J.Zhang Y.-Q.Fan C.-A.Zhang F.-M. Chem. Commun. 2009, 4726 -
2b
Hoye TR.Danielson ME.May AE.Zhao H. Angew. Chem. Int. Ed. 2008, 47: 9743 - 3
Foroumadi A.Emami S.Sorkhi M.Nakhjiri M.Nazarian Z.Heydari S.Ardestani SK.Poorrajab F.Shafiee A. Chem. Biol. Drug Des. 2010, 75: 590 -
4a
Shaabani A.Nejat FS. J. Chem. Res., Synop. 1998, 584 -
4b
Amaresh RR.Perumal PT. Tetrahedron 1999, 55: 8083 -
4c
Csihony S.Mika L.Vlád G.Barta K.Mehnert CP.Horváth IT. Collect. Czech. Chem. Commun. 2007, 72: 1094 ; and references therein -
5a
Reichardt C.Yun K.-Y.Massa W.Schmidt RE. Liebigs Ann. Chem. 1985, 1987 -
5b
Medvedeva AS.Pavlov DV.Mareev AV. Russ. J. Org. Chem. 2008, 44: 143 - 6
Maeda S.Obora Y.Ishii Y. Eur. J. Org. Chem. 2009, 4067 -
7a
Tamaso K.Hatamoto Y.Sakaguchi S.Obora Y.Ishii Y. J. Org. Chem. 2007, 72: 3603 -
7b
Tamaso K.Hatamoto Y.Obora Y.Sakaguchi S.Ishii Y. J. Org. Chem. 2007, 72: 8820 -
7c
Maeda S.Horikawa N.Obora Y.Ishii Y. J. Org. Chem. 2009, 74: 9558 - 8
Cockerill AF.Harrison RG. In The Chemistry of Double-Bonded Functional Groups Part 1:Patai S. John Wiley and Sons; London: 1977. p.277-285 - 10
Oare DA.Heathcock CH. Top. Stereochem. 1989, 19: 227 -
11a
Krishtal GV.Kulganek VV.Kucherov VF.Yanovskaya LA. Synthesis 1979, 107 -
11b
Yamaguchi M.Yokota N.Minami T. J. Chem. Chem., Chem. Commun. 1991, 1088 - 12
Oare DA.Heathcock CH. Top. Stereochem. 1991, 20: 87
References and Notes
All the attempts to isolate or fully characterize the intermediates B, C, and D were unsuccessful. However, when the reaction of 1 and 2g was carried out at r.t. under the conditions as in Table [²] , entry 7, the intermediate B for the formation of 3g was detected by GC and GC-MS analysis. HRMS (EI): m/z calcd for C11H7O2F3 [M]+: 228.0398; found: 228.0396.