Subscribe to RSS
DOI: 10.1055/s-0030-1259721
Modification of Pseudo-C 3-Symmetric Trisoxazoline and Its Application to the Friedel-Crafts Alkylation of Indoles and Pyrrole with Alkylidene Malonates
Publication History
Publication Date:
10 March 2011 (online)
Abstract
New pseudo-C 3-symmetric hetero-trisoxazoline can be easily prepared on a gram scale in good yield. Its combination with copper(II) triflate exhibits high enantiomeric induction in the asymmetric Friedel-Crafts alkylation between indoles and alkylidene malonates, with up to 97% ee and good to excellent yields. The catalyst loading can be lowered to 0.5 mol% without loss of the enantiomeric excess.
Key words
asymmetric catalysis - alkylation - copper - enantioselectivity - indoles
- Supporting Information for this article is available online:
- Supporting Information
- For chiral trisoxazolines, see:
-
1a
Hargaden GC.Guiry PJ. Chem. Rev. 2009, 109: 2505 -
1b
Gaab M.Bellemin-Laponnaz S.Gade LH. Chem. Eur. J. 2009, 15: 5450 -
1c
Gade LH.Bellemin-Laponnaz S. Chem. Eur. J. 2008, 14: 4142 -
1d
Foltz C.Stecker B.Marconi G.Bellemin-Laponnaz S.Wadepohl H.Gade LH. Chem. Eur. J. 2007, 13: 9912 -
1e
Kim S.-G.Seong HR.Kim J.Ahn KH. Tetrahedron Lett. 2004, 45: 6835 -
1f
Rocchetti MT.Fino V.Capriati V.Florio S.Luisi R. J. Org. Chem. 2003, 68: 1394 -
1g
Bellemin-Laponnaz S.Gade LH. Angew. Chem. Int. Ed. 2002, 41: 3473 -
1h
Capriati V.Florio S.Luisi R.Rocchetti MT. J. Org. Chem. 2002, 67: 759 -
1i
Kim S.-G.Ahn KH. Tetrahedron Lett. 2001, 42: 4175 -
1j
Kohmura Y.Katsuki T. Tetrahedron Lett. 2000, 41: 3941 -
1k
Chuang T.-H.Fang J.-M.Bolm C. Synth. Commun. 2000, 30: 1627 -
1l
Chan TH.Zheng GZ. Can. J. Chem. 1997, 75: 629 -
1m
Kawasaki K.Katsuki T. Tetrahedron 1997, 53: 6337 -
1n
Kawasaki K.Tsumura S.Katsuki T. Synlett 1995, 1245 -
1o For achiral trisoxazolines,
see:
Sorrell TN.Pigge FC.White PS. Inorg. Chim. Acta 1993, 210: 87 - For selected recent reports on trisoxazolines in molecular recognition, see:
-
2a
Kim J.Raman B.Ahn KH. J. Org. Chem. 2006, 71: 38 -
2b
Kim J.Ryu D.Sei Y.Yamaguchi K.Ahn KH. Chem. Commun. 2006, 1136 -
2c
Kim J.Kim SG.Seong HR.Ahn KH. J. Org. Chem. 2005, 70: 7227 -
2d
Kim S.-G.Kim K.-H.Kim YK.Shin SK.Ahn KH. J. Am. Chem. Soc. 2003, 125: 13819 -
2e
Ahn KH.Ku H.-Y.Kim Y.Kim S.-G.Kim YK.Son HS.Ku JK. Org. Lett. 2003, 5: 1419 -
2f
Kim S.-G.Kim K.-H.Jung J.Shin SK.Ahn KH. J. Am. Chem. Soc. 2002, 124: 591 -
2g
Kim S.-G.Ahn KH. Chem. Eur. J. 2000, 6: 3399 -
2h
Ahn KH.Kim S.-G.Jung J.Kim K.-H.Kim J.Chin J.Kim K. Chem. Lett. 2000, 170 - For reviews on chiral trisoxazoline in asymmetric catalysis, see ref. 1c and:
-
3a
Hargaden GC.Guiry PJ. Chem. Rev. 2009, 109: 2505 -
3b
Desimoni G.Faita G.Jørgensen KA. Chem. Rev. 2006, 106: 3561 -
3c
Zhou J.Tang Y. Chem. Soc. Rev. 2005, 34: 664 -
3d
McManus HA.Guiry PJ. Chem. Rev. 2004, 104: 4151 -
4a
Ye M.-C.Li B.Zhou J.Sun X.-L.Tang Y. J. Org. Chem. 2005, 70: 6108 -
4b
Zhou J.Ye M.-C.Huang Z.-Z.Tang Y. J. Org. Chem. 2004, 69: 1309 -
4c
Zhou J.Ye M.-C.Tang Y. J. Comb. Chem. 2004, 6: 301 -
4d
Zhou J.Tang Y. Chem. Commun. 2004, 432 -
4e
Zhou J.Tang Y. J. Am. Chem. Soc. 2002, 124: 9030 -
5a
Kang Y.-B.Sun X.-L.Tang Y. Angew. Chem. Int. Ed. 2007, 46: 3918 -
5b
Huang Z.-Z.Kang Y.-B.Zhou J.Ye M.-C.Tang Y. Org. Lett. 2004, 6: 1677 - 6
Zhou J.Tang Y. Org. Biomol. Chem. 2004, 2: 429 -
7a
Ye M.-C.Li B.Zhou J.Sun X.-L.Tang Y. J. Org. Chem. 2005, 70: 6108 -
7b
Ye M.-C.Zhou J.Huang Z.-Z.Tang Y. Chem. Commun. 2003, 2554 - 8
Xu Z.-H.Zhu S.-N.Sun X.-L.Tang Y.Dai L.-X. Chem. Commun. 2007, 1960 - For recent reviews of catalytic asymmetric F-C reactions, see:
-
9a
Marques-Lopez E.Diez-Martinez A.Merino P.Herrera RP. Curr. Org. Chem. 2009, 13: 1585 -
9b
You S.-L.Cai Q.Zeng M. Chem. Soc. Rev. 2009, 38: 2190 -
9c
Poulsen TB.Jorgensen KA. Chem. Rev. 2008, 108: 2903 - For selected recent examples on asymmetric F-C reaction, see:
-
9d
Rasappan R.Olbrich T.Reiser O. Adv. Synth. Catal 2009, 351: 1961 -
9e
Zhou J.-L.Ye M.-C.Sun X.-L.Tang Y. Tetrahedron 2009, 65: 6877 -
9f
Hui Y.Zhang Q.Jiang J.Lin L.Liu X.Feng X. J. Org. Chem. 2009, 74: 6878 -
9g
Liu Y.Shang D.Zhou X.Liu X.Feng X. Chem. Eur. J. 2009, 15: 2055 -
9h
Hong L.Wang L.Chen C.Zhang B.Wang R. Adv. Synth. Chem. 2009, 351: 772 -
9i
Hong L.Wang L.Sun W.Wong K.Wang R. J. Org. Chem. 2009, 74: 6881 -
9j
Kang Q.Zhao Z.-A.You S.-L. Tetrahedron 2009, 65: 1603 -
9k
Chi YG.Scroggins ST.Frechet JMJ. J. Am. Chem. Soc. 2008, 130: 6322 -
9l
Schatz A.Rasappan R.Hager M.Gissibl A.Reiser O. Chem. Eur. J. 2008, 14: 7259 -
9m
Liu H.Lu S.-F.Xu J.Du D.-M. Chem. Asian J. 2008, 3: 1111 -
9n
Liu W.-B.He H.Dai L.-X.You S.-L. Org. Lett. 2008, 10: 1815 -
9o
Lee S.MacMillan DWC. J. Am. Chem. Soc. 2007, 129: 15438 -
9p
Terada M.Sorimachi K. J. Am. Chem. Soc. 2007, 129: 292 -
9q
Lakhdar S.Goumont R.Berionni G.Boubaker T.Kurbatov S.Terrier F. Chem. Eur. J. 2007, 13: 8317 -
9r
Yang H.Hong Y.-T.Kim S. Org. Lett. 2007, 9: 2281 -
9s
Blay G.Fernandez I.Pedro JR.Vila C. Org. Lett. 2007, 9: 2601 -
9t
Dong H.-M.Lu H.-H.Lu L.-Q.Chen C.-B.Xiao W.-J. Adv. Synth. Catal. 2007, 349: 1597 - 10
Cornejo A.Fraile JM.García JI.Gil MJ.Martínez-Merino V.Mayoral JA.Pires E.Villalba I. Synlett 2005, 2321 - 11
Cao C.-L.Zhou Y.-Y.Sun X.-L.Tang Y. Tetrahedron 2008, 64: 10676
References and Notes
Procedure for
the preparation of
i
-Pr-bisoxazoline:
2-(3,5-Di-tert-butylbenzyl)malononitrile (5.36
g, 20 mmol) and Zn(OTf)2 (7.27 g, 20 mmol) in anhydrous
toluene (150 mL) was stirred for 5 min under a nitrogen atmosphere.
To the mixture was added a solution of (S)-2-amino-3-methyl-butan-1-ol
(4.16 g, 40 mmol) in anhydrous toluene (50 mL) and the resulting
reaction mixture was heated at reflux for 72 h. After cooling to
r.t., the mixture was washed with brine (3 × 100
mL) and NaHCO3 (3 × 100 mL),
dried over Na2SO4, and concentrated. The residue
was purified by flash chromatography to give pure i-Pr-BOX
as a buff-colored oil. Yield: 6.07 g (69%). [α]D
²0 -34.1
(c 0.50, CHCl3); IR (neat): 2959,
2872, 1665, 1599, 1468, 1362, 1249, 1201, 991, 713 cm-¹; ¹H
NMR (300 MHz, CDCl3): δ = 7.24 (t, J = 1.8 Hz, 1 H),
7.08 (d, J = 1.8
Hz, 2 H), 4.17-4.26 (m, 2 H), 4.00 (t, J = 7.8 Hz,
1 H), 3.80-3.97 (m, 4 H), 3.15-3.31
(m, 2 H), 1.69-1.80 (m, 1 H), 1.52-1.62
(m, 1 H), 1.30 (s, 18 H), 0.72-0.90 (m,
12 H); ¹³C NMR (75 MHz, CDCl3): δ = 163.63,
163.60, 149.9, 136.7, 122.78, 120.0, 71.4, 71.4, 69.7, 69.6, 41.0,
35.9, 34.3, 31.9, 31.1, 18.1, 18.0, 17.4; MS (EI): m/z = 440 [M+];
HRMS (EI): m/z [M]+ calcd
for C28H44O2N2 440.3403.
Found: 440.3402.
Typical procedure
for the synthesis of chiral hetero-trisoxazoline 2: To a solution
of bisoxazoline 5 (2.97 g, 7.0 mmol) in
dried THF (90 mL) was added dropwise t-BuLi (5.0
mL, 1.6 M in hexanes, 8.0 mmol) within 15-20 min at -78 ˚C.
The resulting yellow solution was stirred for 1 h at the
same temperature, then a solution of 2-chloromethyl oxazoline 6a (1.99 g, 9.8 mmol) in THF (50 mL) was
added dropwise at -78 ˚C over 20 min.
The mixture was slowly warmed to room temperature and kept stirring
for a further 36 h. The solvent was removed and the residue
was diluted with CH2Cl2 (100 mL), then washed
with H2O (20 mL). The aqueous layer was extracted with
CH2Cl2 (2 × 20
mL), and the combined organic phases were dried over Na2SO4, filtered,
and concentrated. Petroleum ether was added to precipitate 2-chloromethyl
oxazoline, the filtrate was collected, and the solvent was removed
in vacuo. The residue was purified by flash chromatography (PE-EtOAc, 10:1→1:2)
to give pure product as a white solid. Yield: 2.64 g (64%); [α]D
²0 -8.2
(c 1.00, CHCl3); IR (KBr):
2958, 2926, 2870, 1659, 1599, 1478, 1459, 1362, 1247, 1177, 1001,
752 cm-¹; ¹H NMR
(400 MHz, CDCl3): δ = 7.80 (d, J = 6.0 Hz, 1 H),
7.22-7.26 (m, 4 H), 7.08 (s, 2 H), 5.54
(d, J = 8.0
Hz, 1 H), 5.37 (t, J = 6.8
Hz, 1 H), 4.28 (t, J = 8.8
Hz, 1 H), 3.98 (t, J = 7.6
Hz, 1 H), 3.70-3.83 (m, 3 H), 3.35-3.55
(m, 4 H), 3.06-3.13 (m, 2 H), 2.68 (d, J = 14.8 Hz,
1 H), 1.67-1.76 (m, 1 H), 1.54-1.62
(m, 1 H), 1.26 (s, 18 H), 0.70-0.87 (m, 12 H); ¹³C
NMR (100 MHz, CDCl3): δ = 165.5, 165.3, 164.7,
150.0, 142.4, 140.1, 135.3, 128.2, 127.2, 125.4, 125.4, 124.9, 120.5,
82.9, 76.4, 71.7, 71.0, 70.0, 69.4, 46.0, 40.1, 38.3, 34.6, 32.4,
31.8, 31.5, 30.4, 18.8, 18.4, 17.6, 17.0; MS (EI): m/z = 611 [M+];
HRMS (EI): m/z [M]+ calcd
for C39H53O3N3: 611.4087.
Found: 611.4088.
Typical procedure
for 2/Cu(OTf)
2
-catalyzed asymmetric Friedel-Crafts
reaction (9b as an example): To a Schlenk tube was added 2 (18.4 mg, 0.030 mmol), Cu(OTf)2 (9.1
mg, 0.025 mmol), and s-BuOH (1.25 mL)
under an N2 atmos-phere, and the resulting blue-green
solution was stirred at room temperature for 2-3 h.
The solution of catalyst was transferred to 8b (62.5
mg, 0.25 mmol) under an air atmos-phere and the mixture was allowed
to stir at -25 ˚C for 15 min, then indole
(36.0 mg, 0.30 mmol) was added. The reaction was held at -25 ˚C
until complete (reaction monitored by TLC), then the mixture was
concentrated under reduced pressure, and the residue was submitted
to flash column chromatography on silica gel (CH2Cl2-PE,
1:1 then pure CH2Cl2) to afford the desired
product 9b as a white solid. Yield: 91.6
mg (99%); 94% ee [Chiralcel OD-H,
i-PrOH-hexane, 10:90, 0.90 mL/min,
254 nm: t
R (minor) = 20.35
min, t
R (major) = 24.73
min.]; ¹H NMR (300 MHz, CDCl3): δ = 8.01
(br s, 1 H), 7.55 (d, J = 8.1
Hz, 1 H), 7.19-7.38 (m, 6 H), 7.11-7.16
(m, 2 H), 7.01-7.06 (m, 1 H), 5.08 (d, J = 12 Hz,
1 H), 4.29 (d, J = 12
Hz, 1 H), 3.99 (m, 4 H), 1.00 (m, 6 H).