References and Notes
-
For chiral trisoxazolines, see:
-
1a
Hargaden GC.
Guiry
PJ.
Chem.
Rev.
2009,
109:
2505
-
1b
Gaab M.
Bellemin-Laponnaz S.
Gade LH.
Chem. Eur. J.
2009,
15:
5450
-
1c
Gade LH.
Bellemin-Laponnaz S.
Chem.
Eur. J.
2008,
14:
4142
-
1d
Foltz C.
Stecker B.
Marconi G.
Bellemin-Laponnaz S.
Wadepohl H.
Gade LH.
Chem. Eur. J.
2007,
13:
9912
-
1e
Kim S.-G.
Seong HR.
Kim J.
Ahn KH.
Tetrahedron Lett.
2004,
45:
6835
-
1f
Rocchetti MT.
Fino V.
Capriati V.
Florio S.
Luisi R.
J.
Org. Chem.
2003,
68:
1394
-
1g
Bellemin-Laponnaz S.
Gade LH.
Angew.
Chem. Int. Ed.
2002,
41:
3473
-
1h
Capriati V.
Florio S.
Luisi R.
Rocchetti MT.
J. Org. Chem.
2002,
67:
759
-
1i
Kim S.-G.
Ahn KH.
Tetrahedron Lett.
2001,
42:
4175
-
1j
Kohmura Y.
Katsuki T.
Tetrahedron Lett.
2000,
41:
3941
-
1k
Chuang T.-H.
Fang J.-M.
Bolm C.
Synth.
Commun.
2000,
30:
1627
-
1l
Chan TH.
Zheng GZ.
Can.
J. Chem.
1997,
75:
629
-
1m
Kawasaki K.
Katsuki T.
Tetrahedron
1997,
53:
6337
-
1n
Kawasaki K.
Tsumura S.
Katsuki T.
Synlett
1995,
1245
-
1o For achiral trisoxazolines,
see: Sorrell TN.
Pigge FC.
White PS.
Inorg.
Chim. Acta
1993,
210:
87
-
For selected recent reports on trisoxazolines
in molecular recognition, see:
-
2a
Kim J.
Raman B.
Ahn KH.
J.
Org. Chem.
2006,
71:
38
-
2b
Kim J.
Ryu D.
Sei Y.
Yamaguchi K.
Ahn KH.
Chem.
Commun.
2006,
1136
-
2c
Kim J.
Kim SG.
Seong HR.
Ahn KH.
J. Org. Chem.
2005,
70:
7227
-
2d
Kim S.-G.
Kim K.-H.
Kim YK.
Shin SK.
Ahn KH.
J.
Am. Chem. Soc.
2003,
125:
13819
-
2e
Ahn KH.
Ku H.-Y.
Kim Y.
Kim S.-G.
Kim YK.
Son HS.
Ku JK.
Org.
Lett.
2003,
5:
1419
-
2f
Kim S.-G.
Kim K.-H.
Jung J.
Shin SK.
Ahn KH.
J.
Am. Chem. Soc.
2002,
124:
591
-
2g
Kim S.-G.
Ahn KH.
Chem. Eur. J.
2000,
6:
3399
-
2h
Ahn KH.
Kim S.-G.
Jung J.
Kim K.-H.
Kim J.
Chin J.
Kim K.
Chem. Lett.
2000,
170
-
For reviews on chiral trisoxazoline
in asymmetric catalysis, see ref. 1c and:
-
3a
Hargaden GC.
Guiry PJ.
Chem.
Rev.
2009,
109:
2505
-
3b
Desimoni G.
Faita G.
Jørgensen
KA.
Chem. Rev.
2006,
106:
3561
-
3c
Zhou J.
Tang Y.
Chem. Soc. Rev.
2005,
34:
664
-
3d
McManus HA.
Guiry PJ.
Chem.
Rev.
2004,
104:
4151
-
4a
Ye M.-C.
Li B.
Zhou J.
Sun X.-L.
Tang Y.
J.
Org. Chem.
2005,
70:
6108
-
4b
Zhou J.
Ye M.-C.
Huang
Z.-Z.
Tang Y.
J. Org. Chem.
2004,
69:
1309
-
4c
Zhou J.
Ye M.-C.
Tang Y.
J.
Comb. Chem.
2004,
6:
301
-
4d
Zhou J.
Tang Y.
Chem. Commun.
2004,
432
-
4e
Zhou J.
Tang Y.
J. Am. Chem. Soc.
2002,
124:
9030
-
5a
Kang Y.-B.
Sun X.-L.
Tang Y.
Angew. Chem. Int. Ed.
2007,
46:
3918
-
5b
Huang Z.-Z.
Kang Y.-B.
Zhou J.
Ye M.-C.
Tang Y.
Org. Lett.
2004,
6:
1677
- 6
Zhou J.
Tang Y.
Org. Biomol. Chem.
2004,
2:
429
-
7a
Ye M.-C.
Li B.
Zhou J.
Sun X.-L.
Tang Y.
J.
Org. Chem.
2005,
70:
6108
-
7b
Ye M.-C.
Zhou J.
Huang
Z.-Z.
Tang Y.
Chem. Commun.
2003,
2554
- 8
Xu Z.-H.
Zhu S.-N.
Sun X.-L.
Tang Y.
Dai L.-X.
Chem.
Commun.
2007,
1960
-
For recent reviews of catalytic
asymmetric F-C reactions, see:
-
9a
Marques-Lopez E.
Diez-Martinez A.
Merino P.
Herrera RP.
Curr. Org. Chem.
2009,
13:
1585
-
9b
You S.-L.
Cai Q.
Zeng M.
Chem.
Soc. Rev.
2009,
38:
2190
-
9c
Poulsen TB.
Jorgensen KA.
Chem.
Rev.
2008,
108:
2903
-
For selected recent examples on asymmetric F-C reaction,
see:
-
9d
Rasappan R.
Olbrich T.
Reiser O.
Adv. Synth.
Catal
2009,
351:
1961
-
9e
Zhou J.-L.
Ye M.-C.
Sun X.-L.
Tang Y.
Tetrahedron
2009,
65:
6877
-
9f
Hui Y.
Zhang Q.
Jiang J.
Lin L.
Liu X.
Feng X.
J.
Org. Chem.
2009,
74:
6878
-
9g
Liu Y.
Shang D.
Zhou X.
Liu X.
Feng X.
Chem. Eur.
J.
2009,
15:
2055
-
9h
Hong L.
Wang L.
Chen C.
Zhang B.
Wang R.
Adv. Synth.
Chem.
2009,
351:
772
-
9i
Hong L.
Wang L.
Sun W.
Wong K.
Wang R.
J. Org. Chem.
2009,
74:
6881
-
9j
Kang Q.
Zhao Z.-A.
You S.-L.
Tetrahedron
2009,
65:
1603
-
9k
Chi YG.
Scroggins ST.
Frechet JMJ.
J. Am. Chem. Soc.
2008,
130:
6322
-
9l
Schatz A.
Rasappan R.
Hager M.
Gissibl A.
Reiser O.
Chem.
Eur. J.
2008,
14:
7259
-
9m
Liu H.
Lu S.-F.
Xu J.
Du D.-M.
Chem. Asian J.
2008,
3:
1111
-
9n
Liu W.-B.
He H.
Dai L.-X.
You S.-L.
Org. Lett.
2008,
10:
1815
-
9o
Lee S.
MacMillan DWC.
J. Am.
Chem. Soc.
2007,
129:
15438
-
9p
Terada M.
Sorimachi K.
J. Am. Chem. Soc.
2007,
129:
292
-
9q
Lakhdar S.
Goumont R.
Berionni G.
Boubaker T.
Kurbatov S.
Terrier F.
Chem. Eur. J.
2007,
13:
8317
-
9r
Yang H.
Hong Y.-T.
Kim S.
Org.
Lett.
2007,
9:
2281
-
9s
Blay G.
Fernandez I.
Pedro JR.
Vila C.
Org. Lett.
2007,
9:
2601
-
9t
Dong H.-M.
Lu H.-H.
Lu L.-Q.
Chen C.-B.
Xiao W.-J.
Adv.
Synth. Catal.
2007,
349:
1597
- 10
Cornejo A.
Fraile JM.
García JI.
Gil MJ.
Martínez-Merino V.
Mayoral JA.
Pires E.
Villalba I.
Synlett
2005,
2321
- 11
Cao C.-L.
Zhou Y.-Y.
Sun X.-L.
Tang Y.
Tetrahedron
2008,
64:
10676
12
Procedure for
the preparation of
i
-Pr-bisoxazoline:
2-(3,5-Di-tert-butylbenzyl)malononitrile (5.36
g, 20 mmol) and Zn(OTf)2 (7.27 g, 20 mmol) in anhydrous
toluene (150 mL) was stirred for 5 min under a nitrogen atmosphere.
To the mixture was added a solution of (S)-2-amino-3-methyl-butan-1-ol
(4.16 g, 40 mmol) in anhydrous toluene (50 mL) and the resulting
reaction mixture was heated at reflux for 72 h. After cooling to
r.t., the mixture was washed with brine (3 × 100
mL) and NaHCO3 (3 × 100 mL),
dried over Na2SO4, and concentrated. The residue
was purified by flash chromatography to give pure i-Pr-BOX
as a buff-colored oil. Yield: 6.07 g (69%). [α]D
²0 -34.1
(c 0.50, CHCl3); IR (neat): 2959,
2872, 1665, 1599, 1468, 1362, 1249, 1201, 991, 713 cm-¹; ¹H
NMR (300 MHz, CDCl3): δ = 7.24 (t, J = 1.8 Hz, 1 H),
7.08 (d, J = 1.8
Hz, 2 H), 4.17-4.26 (m, 2 H), 4.00 (t, J = 7.8 Hz,
1 H), 3.80-3.97 (m, 4 H), 3.15-3.31
(m, 2 H), 1.69-1.80 (m, 1 H), 1.52-1.62
(m, 1 H), 1.30 (s, 18 H), 0.72-0.90 (m,
12 H); ¹³C NMR (75 MHz, CDCl3): δ = 163.63,
163.60, 149.9, 136.7, 122.78, 120.0, 71.4, 71.4, 69.7, 69.6, 41.0,
35.9, 34.3, 31.9, 31.1, 18.1, 18.0, 17.4; MS (EI): m/z = 440 [M+];
HRMS (EI): m/z [M]+ calcd
for C28H44O2N2 440.3403.
Found: 440.3402.
Typical procedure
for the synthesis of chiral hetero-trisoxazoline 2: To a solution
of bisoxazoline 5 (2.97 g, 7.0 mmol) in
dried THF (90 mL) was added dropwise t-BuLi (5.0
mL, 1.6 M in hexanes, 8.0 mmol) within 15-20 min at -78 ˚C.
The resulting yellow solution was stirred for 1 h at the
same temperature, then a solution of 2-chloromethyl oxazoline 6a (1.99 g, 9.8 mmol) in THF (50 mL) was
added dropwise at -78 ˚C over 20 min.
The mixture was slowly warmed to room temperature and kept stirring
for a further 36 h. The solvent was removed and the residue
was diluted with CH2Cl2 (100 mL), then washed
with H2O (20 mL). The aqueous layer was extracted with
CH2Cl2 (2 × 20
mL), and the combined organic phases were dried over Na2SO4, filtered,
and concentrated. Petroleum ether was added to precipitate 2-chloromethyl
oxazoline, the filtrate was collected, and the solvent was removed
in vacuo. The residue was purified by flash chromatography (PE-EtOAc, 10:1→1:2)
to give pure product as a white solid. Yield: 2.64 g (64%); [α]D
²0 -8.2
(c 1.00, CHCl3); IR (KBr):
2958, 2926, 2870, 1659, 1599, 1478, 1459, 1362, 1247, 1177, 1001,
752 cm-¹; ¹H NMR
(400 MHz, CDCl3): δ = 7.80 (d, J = 6.0 Hz, 1 H),
7.22-7.26 (m, 4 H), 7.08 (s, 2 H), 5.54
(d, J = 8.0
Hz, 1 H), 5.37 (t, J = 6.8
Hz, 1 H), 4.28 (t, J = 8.8
Hz, 1 H), 3.98 (t, J = 7.6
Hz, 1 H), 3.70-3.83 (m, 3 H), 3.35-3.55
(m, 4 H), 3.06-3.13 (m, 2 H), 2.68 (d, J = 14.8 Hz,
1 H), 1.67-1.76 (m, 1 H), 1.54-1.62
(m, 1 H), 1.26 (s, 18 H), 0.70-0.87 (m, 12 H); ¹³C
NMR (100 MHz, CDCl3): δ = 165.5, 165.3, 164.7,
150.0, 142.4, 140.1, 135.3, 128.2, 127.2, 125.4, 125.4, 124.9, 120.5,
82.9, 76.4, 71.7, 71.0, 70.0, 69.4, 46.0, 40.1, 38.3, 34.6, 32.4,
31.8, 31.5, 30.4, 18.8, 18.4, 17.6, 17.0; MS (EI): m/z = 611 [M+];
HRMS (EI): m/z [M]+ calcd
for C39H53O3N3: 611.4087.
Found: 611.4088.
Typical procedure
for 2/Cu(OTf)
2
-catalyzed asymmetric Friedel-Crafts
reaction (9b as an example): To a Schlenk tube was added 2 (18.4 mg, 0.030 mmol), Cu(OTf)2 (9.1
mg, 0.025 mmol), and s-BuOH (1.25 mL)
under an N2 atmos-phere, and the resulting blue-green
solution was stirred at room temperature for 2-3 h.
The solution of catalyst was transferred to 8b (62.5
mg, 0.25 mmol) under an air atmos-phere and the mixture was allowed
to stir at -25 ˚C for 15 min, then indole
(36.0 mg, 0.30 mmol) was added. The reaction was held at -25 ˚C
until complete (reaction monitored by TLC), then the mixture was
concentrated under reduced pressure, and the residue was submitted
to flash column chromatography on silica gel (CH2Cl2-PE,
1:1 then pure CH2Cl2) to afford the desired
product 9b as a white solid. Yield: 91.6
mg (99%); 94% ee [Chiralcel OD-H,
i-PrOH-hexane, 10:90, 0.90 mL/min,
254 nm: t
R (minor) = 20.35
min, t
R (major) = 24.73
min.]; ¹H NMR (300 MHz, CDCl3): δ = 8.01
(br s, 1 H), 7.55 (d, J = 8.1
Hz, 1 H), 7.19-7.38 (m, 6 H), 7.11-7.16
(m, 2 H), 7.01-7.06 (m, 1 H), 5.08 (d, J = 12 Hz,
1 H), 4.29 (d, J = 12
Hz, 1 H), 3.99 (m, 4 H), 1.00 (m, 6 H).