Synlett 2011(6): 770-782  
DOI: 10.1055/s-0030-1259906
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Selective Nucleophilic Fluoroalkylations Facilitated by Removable Activation Groups

Chuanfa Ni, Jinbo Hu*
Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
Fax: +86(21)64166128; e-Mail: jinbohu@sioc.ac.cn;
Further Information

Publication History

Received 3 November 2010
Publication Date:
15 March 2011 (online)

Abstract

Selective incorporation of fluorine atoms or fluorine-containing moieties into organic molecules has become a routine and powerful strategy in drug design and new functional-material development. Nucleophilic fluoroalkylation, typically involving the transfer of a fluorinated carbanion or carbanion equivalent to an electrophile, is one of the most important and frequently used methods to synthesize fluorinated organic molecules. In this Account, we introduce some recent achievements in the field of nucleophilic di- and monofluoroalkylation chemistry with functionalized fluoroalkylation reagents. In particular, the effect of fluorine substitution on the reactivity of carbanions is discussed, and several strategies for improving nucleophilic fluoroalkylations are proposed and successfully applied in various new nucleophilic fluoroalkylation reactions. It was found that attaching a removable activation group (such as the phenylsulfonyl group) to a fluorinated carbanion is an important approach to improve the latter’s reactivity.

1 Introduction

2 The Fluorine Effect in Nucleophilic Fluoroalkylation Reactions

2.1 Unique Properties of Fluorinated Carbanions

2.2 Factors Influencing the Reactivity of Fluorinated Carbanions towards the Electrophiles

2.3 Possible Strategies to Improve the Nucleophilic Fluoroalkylations

3 Nucleophilic Di- and Monofluoroalkylation Reactions

3.1 Nucleophilic Difluoromethylation with PhSO2CF2H and Related Reagents

3.2 Transformations of (Phenylsulfonyl)difluoromethylated Compounds

3.3 Nucleophilic Difluoromethylation with TMSCF2SPh and Related Reagents

3.4 Nucleophilic Phosphoryldifluoromethylation Reactions

3.5 Nucleophilic Monofluoromethylation with PhSO2CH2F Reagent

3.6 Nucleophilic Monofluoromethylation with α-Functionalized Fluoro(phenylsulfonyl)methanes

3.7 Synthesis of Fluorinated Alkenes with Fluorinated Sulfoximines and Heteroaryl Sulfones

3.8 Catalytic Asymmetric Fluoroalkylation Reactions

4 Concluding Remarks

    References and Notes

  • 1a Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine   Wiley-VCH; Hoboken: 2008. 
  • 1b Hunter L. Beilstein J. Org. Chem.  2010,  6:  No. 38 ; doi:10.3762/bjoc.6.38
  • 2a Müller K. Faeh C. Diederich F. Science  2007,  317:  1881 
  • 2b Uneyama K. Organofluorine Chemistry   Blackwell; Oxford: 2006. 
  • 2c Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications   Wiley-VCH; Weinheim: 2004. 
  • 2d Yamazaki T. Taguchi T. Ojima I. In Fluorine in Medicinal Chemistry and Chemical Biology   Ojima I. Wiley-Blackwell; Chichester: 2009. 
  • 3a Gribble GW. Chem. Soc. Rev.  1999,  28:  335 
  • 3b Kirk KL. Org. Process Res. Dev.  2008,  12:  305 
  • 3c O’Hagan D. Schaffrath C. Cobb SL. Hamilton JTG. Murphy CD. Nature (London)  2002,  416:  279 
  • 5a Prakash GKS. Hu J. New Nucleophilic Fluoroalkylation Chemistry, In Fluorine-Containing Synthons   Soloshonok VA. ACS; Washington / DC: 2005. ; and references therein
  • 5b Prakash GKS. Hu J. Acc. Chem. Res.  2007,  40:  921 ; and references therein
  • 6a Farnham WB. Chem. Rev.  1996,  96:  1633 ; and references therein
  • 6b Prakash GKS. Krishnamurti R. Olah GA. J. Am. Chem. Soc.  1989,  111:  393 
  • 6c Prakash GKS. Yudin AK. Chem. Rev.  1997,  97:  757 ; and references therein
  • 7 Uneyama K. J. Fluorine Chem.  2008,  129:  550 
  • 8 Hagiwara T. Fuchikami T. Synlett  1995,  717 
  • 9 Florio S. Luisi R. Chem. Rev.  2010,  110:  1528 
  • 10 Bickelhaupt FM. Hermann HL. Boche G. Angew. Chem. Int. Ed.  2006,  45:  823 
  • 11 Faustov VI. D’yachenko A. Nefedov OM. Izv. Akad. Nauk SSSR, Ser. Khim.  1979,  2183 
  • 12a Boche G. Lohrenz JCW. Chem. Rev.  2001,  101:  697 
  • 12b Capriati V. Florio S. Chem. Eur. J.  2010,  16:  4512 
  • 13a Stahly GP. J. Fluorine Chem.  1989,  43:  53 
  • 13b Edwards JA, Fried JH, and Mills JS. inventors; US  3,705,182. 
  • 13c Hine J. Porter JJ. J. Am. Chem. Soc.  1960,  82:  6178 
  • 13d Hu J. J. Fluorine Chem.  2009,  130:  1130 
  • 14a Ni C. Li Y. Hu J. J. Org. Chem.  2006,  71:  6829 
  • 14b Ni C. PhD Dissertation   Shanghai Institute of Organic Chemistry; P. R. of China: 2008. 
  • 15 Ni C. Liu J. Zhang L. Hu J. Angew. Chem. Int. Ed.  2007,  46:  786 
  • 16 Fleming I. Frontier Orbitals and Organic Chemical Reactions   Wiley; New York: 1976. 
  • 17 Ho T.-L. Hard and Soft Acids and Bases Principle in Organic Chemistry   Academic Press; New York: 1977. 
  • 18 Ni C. Zhang L. Hu J. J. Org. Chem.  2008,  73:  5699 
  • 19 Nielsen M. Jacobsen CB. Holub N. Paixão MW. Jørgensen KA. Angew. Chem. Int. Ed.  2010,  49:  2668 
  • 20a Prakash GKS. Hu J. Wang Y. Olah GA. Angew. Chem. Int. Ed.  2004,  43:  5203 
  • 20b Prakash GKS. Hu J. Wang Y. Olah GA. Org. Lett.  2004,  6:  4315 
  • 21 Prakash GKS. Hu J. Wang Y. Olah GA. Eur. J. Org. Chem.  2005,  2218 
  • 22a Li Y. Hu J. Angew. Chem. Int. Ed.  2007,  46:  2489 
  • 22b Liu J. Hu J. Chem. Eur. J.  2010,  16:  11443 
  • 22c Liu J. Li Y. Hu J. J. Org. Chem.  2007,  72:  3119 
  • 23a Ni C. Hu J. Tetrahedron Lett.  2005,  46:  8273 
  • 23b Liu J. Ni C. Wang F. Hu J. Tetrahedron Lett.  2008,  49:  1605 
  • 23c Zhu L. Li Y. Zhao Y. Hu J. Tetrahedron Lett.  2010,  51:  6150 
  • 24 Zhang L. Li Y. Hu J. J. Fluorine Chem.  2007,  128:  755 
  • 25a Prakash GKS. Wang Y. Hu J. Olah GA. J. Fluorine Chem.  2005,  126:  1361 
  • 25b Sabol JS. McCarthy JR. Tetrahedron Lett.  1992,  33:  3101 
  • 26 Ni C. Zhang L. Hu J. J. Org. Chem.  2009,  74:  3767 
  • 27 Prakash GKS. Hu J. Mathew T. Olah GA. Angew. Chem. Int. Ed.  2003,  42:  5216 
  • 28 Mogi R. Morisaki K. Hu J. Prakash GKS. Olah GA. J. Fluorine Chem.  2007,  128:  1098 
  • 29a Li Y. Hu J. Angew. Chem. Int. Ed.  2007,  46:  2489 
  • 29b Li Y. Hu J. J. Fluorine Chem.  2008,  129:  382 
  • 29c Prakash GKS. Hu J. Wang Y. Olah GA.
    J. Fluorine Chem.  2005,  126:  529 
  • 30 Qin Y.-Y. Qiu X.-L. Yang Y.-Y. Meng W.-D. Qing F.-L. J. Org. Chem.  2006,  70:  9040 
  • 31 Obayashi M. Ito E. Matsui K. Kondo K. Tetrahedron Lett.  1982,  23:  2323 
  • 32a Piettre SR. Girol C. Schelcher CG. Tetrahedron Lett.  1996,  37:  4711 
  • 32b Piettre SR. Cabanas L. Tetrahedron Lett.  1996,  37:  5881 
  • 33 Beier P. Alexandrova AV. Zibinsky M. Prakash GKS. Tetrahedron  2008,  64:  10977 
  • 34 Alexandrovs A. Beier P. J. Fluorine Chem.  2009,  130:  493 
  • 35a Matthews DP. Persichetti RA. McCarthy JR. Org. Prep. Proced. Int.  1994,  26:  605 
  • 35b Inbasekaran M. Peet N. McCarthy JR. J. Chem. Soc., Chem. Commun.  1985,  678 
  • 36a Li Y. Ni C. Liu J. Zhang L. Zheng J. Zhu L. Hu J. Org. Lett.  2006,  8:  1693 
  • 36b Liu J. Li Y. Hu J. J. Org. Chem.  2007,  72:  3119 
  • 37 Liu J. Zhang L. Zheng J. Zhu L. Hu J. Org. Lett.  2008,  10:  5377 
  • 38 Prakash GKS. Wang F. Shao N. Mathew T. Rasul G. Haiges R. Stewart T. Olah GA. Angew. Chem. Int. Ed.  2009,  48:  5358 
  • 39 Ni C. Hu J. Tetrahedron Lett.  2009,  50:  7252 
  • 40 Prakash GKS. Zhao X. Chacko S. Wang F. Vaghoo H. Olah GA. Beilstein J. Org. Chem.  2008,  4:  No. 17 ; doi: 10.3762/bjoc.4.17
  • 41 Prakash GKS. Chacko S. Alconcel S. Stewart T. Mathew T. Olah GA. Angew. Chem. Int. Ed.  2007,  46:  4933 
  • 42 Liu J. Ni C. Li Y. Zhang L. Wang G. Hu J. Tetrahedron Lett.  2006,  47:  6753 
  • 43 Furukawa T. Goto Y. Kawazoe J. Tokunaga E. Nakamura S. Yang Y. Du H. Kakehi A. Shiro M. Shibata N. Angew. Chem. Int. Ed.  2010,  49:  1642 
  • 44 Prakash GKS. Wang F. Ni C. Thomas TJ. Olah GA. J. Fluorine Chem.  2010,  131:  1007 ; and references therein
  • 45 Prakash GKS. Chacko S. Vaghoo H. Shao N. Gurung L. Mathew T. Olah GA. Org. Lett.  2009,  11:  1127 
  • 46 Zajc B. Kumar R. Synthesis  2010,  1822 
  • 47 Zhu L. Ni C. Zhao Y. Hu J. Tetrahedron  2010,  66:  5089 
  • 48 Zhao Y. Huang W. Zhu L. Hu J. Org. Lett.  2010,  12:  1444 
  • 49 Boys ML. Collington EW. Finch H. Swanson S. Shitehead JF. Tetrahedron Lett.  1988,  29:  3365 
  • 50 Zhang W. Huang W. Hu J. Angew. Chem. Int. Ed.  2009,  48:  9858 
  • 51 Ni C. Wang F. Hu J. Beilstein J. Org. Chem.  2008,  4:  No. 21 ; doi: 10.3762/bjoc.4.21
  • 52 Fukuzumi T. Shibata N. Sugiura M. Yasui H. Nakamura S. Toru T. Angew. Chem. Int. Ed.  2006,  45:  4973 
  • 53 Liu W.-B. Zheng S.-C. He H. Zhao X.-M. Dai L.-X. You S.-L. Chem. Commun.  2009,  6604 
  • 54 Furukawa T. Shibata N. Mizuta S. Nakamura S. Toru T. Shiro M. Angew. Chem. Int. Ed.  2008,  47:  8051 
  • 55 Moon HW. Cho MJ. Kim DY. Tetrahedron Lett.  2009,  50:  4896 
  • 56 Alba A.-N. Companyó X. Moyano A. Rios R. Chem. Eur. J.  2009,  15:  7035 
  • 57 Ullah F. Zhao G.-L. Deiana L. Zhu M. Dziedzic P. Ibrahem I. Hammar P. Sun J. Córdova A. Chem. Eur.
    J.  2009,  15:  10013 
  • 58 Zhang S. Zhang Y. Ji Y. Li H. Wang W. Chem. Commun.  2009,  4886 
  • 59 Mizuta S. Shibata N. Goto Y. Furukawa T. Nakamura S. Toru T. J. Am. Chem. Soc.  2007,  129:  6394 
  • 60a Prakash GKS. Wang F. Stewart T. Mathew T. Olah GA. Proc. Natl. Acad. Sci. U.S.A.  2009,  108:  4090 
  • 60b Kamlar M. Bravo N. Alba A.-NR. Hybelbauerová S. Císařová I. Vesely J. Movano A. Tios R. Eur. J. Org. Chem.  2010,  5464 
  • 60c Jiang Z. Pan Y. Zhao Y. Ma T. Lee R. Yang Y. Huang K.-W. Wong MW. Tan C.-H. Angew. Chem. Int. Ed.  2010,  48:  3627 
  • 60d Cui H.-F. Yang Y.-Q. Chai Z. Li P. Zheng C.-W. Zhu S.-Z. Zhao G. J. Org. Chem.  2010,  75:  117 
  • 60e Han X. Kwiatkowski J. Xue F. Huang K.-W. Lu Y. Angew. Chem. Int. Ed.  2009,  48:  7604 
  • 60f Pan Y. Zhao Y. Ma T. Yang Y. Liu H. Jiang Z. Tan C.-H. Chem. Eur. J.  2010,  16:  779 
  • 60g Han X. Luo J. Liu C. Lu Y. Chem. Commun.  2009,  2044 
  • 60h Oh Y. Kim SM. Kim DY. Tetrahedron Lett.  2009,  50:  4674 
  • 60i Companyó X. Hejnová M. Kamlar M. Vesely J. Moyano A. Rios R. Tetrahedron Lett.  2009,  50:  5021 
  • 60j Li H. Ji Y.-F. Li J. Zhang S.-L. Yu C.-G. Wang W. Sci. China: Chem.  2010,  53:  135 
4

A SciFinder search (October, 2010) revealed >4,000,000 structures containing at least one C-F bond and >7,200,000 structures containing at least one C-X (X = F, Cl, Br, I) bond.