Synlett 2011(6): 821-825  
DOI: 10.1055/s-0030-1259917
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Metal-Free Deprotection of Terminal Acetonides by Using tert-Butyl Hydroperoxide in Aqueous Medium

Mahagundappa R. Maddani, Kandikere R. Prabhu*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
Fax: +91(80)23600529; e-Mail: prabhu@orgchem.iisc.ernet.in;
Further Information

Publication History

Received 3 January 2011
Publication Date:
16 March 2011 (online)

Abstract

Employing aqueous tert-butyl hydroperoxide (70%) as an inexpensive reagent a useful methodology for the regioselective and chemoselective deprotection of terminal acetonide groups in aqueous medium is developed. A variety of acetonide derivatives on reaction with aqueous tert-butyl hydroperoxide in water:tert-­butanol (1:1) furnish the corresponding acetonide deprotected diols in good yields. A large number of acid labile protecting functional groups and other functional moieties were found to be unaffected under the conditions employed for the present deprotection. This method has been successfully applied to sugar derivatives.

    References and Notes

  • 1a Green TW. Wuts PGM. Protecting Groups in Organic Synthesis   2nd ed.:  John Wiley and Sons; New York: 1991. 
  • 1b Sartori G. Ballini R. Bigi F. Bosica G. Maggi R. Righi P. Chem. Rev.  2004,  104:  199 
  • 1c Isidro-Llobet A. Álvarez M. Albericio F. Chem. Rev.  2009,  109:  2455 
  • 1d Ley SV. Baeschlin DK. Dixon DJ. Foster AC. Ince SJ. Priepke HWM. Reynolds DJ. Chem. Rev.  2001,  101:  53 
  • 1e Sureshan KM. Shashidhar MS. Praveen T. Das T. Chem. Rev.  2003,  103:  4477 
  • 2a Kocienski PJ. Protecting Groups   Thieme; Stuttgart: 1994. 
  • 2b Coste G. Gerber-Lemaire S. Tetrahedron Lett.  2006,  47:  671 
  • 2c Yadav JS. Satyanarayana M. Raghavendra S. Balanarsaiah E. Tetrahedron Lett.  2005,  46:  8745 
  • 2d Cong X. Hu F. Liu K.-G. Liao Q.-J. Yao Z.-J. J. Org. Chem.  2005,  70:  4514 
  • 2e Shaikh NS. Bhor SS. Gajare AS. Deshpande VH. Wakharkar RD. Tetrahedron Lett.  2004,  45:  5395 ; and references cited therein
  • 3 Fleet GWJ. Smith PW. Tetrahedron Lett.  1985,  26:  1469 
  • 4 Gerspacher M. Rapoport H. J. Org. Chem.  1991,  56:  3700 
  • 5 Yadav JS. Chander MC. Reddy KK. Tetrahedron Lett.  1992,  33:  135 
  • 6 Sukumar M. Jacques V. Pendri Y. Falck JR. Tetrahedron Lett.  1986,  27:  2679 
  • 7 Park KH. Yoon YJ. Lee SG. Tetrahedron Lett.  1994,  35:  9737 
  • 8 Baurle S. Hoppen S. Koert U. Angew. Chem. Int. Ed.  1999,  38:  1263 
  • 9 Leblanc Y. Fitzsimmons BJ. Adams J. Perez F. Rokach J. J. Org. Chem.  1986,  51:  789 
  • 10 Ichihara A. Ubukata M. Sakamura S. Tetrahedron Lett.  1977,  18:  3473 
  • 11 Mahender G. Ramu R. Ramesh C. Das B. Chem. Lett.  2003,  32:  734 
  • 12 Kim KS. Song YH. Lee BH. Hahn CS. J. Org. Chem.  1986,  51:  404 
  • 13 Iwata M. Ohrui H. Bull. Chem. Soc. Chim. Jpn.  1981,  54:  2837 
  • 14 Raghavendraswamy N. Venkateshwarlu Y. Tetrahedron Lett.  2002,  43:  7549 
  • 15 Vijayasaradhi S. Singh J. Aidhen IS. Synlett  2000,  110 
  • 16 Ates A. Gautier A. Leroy B. Plancher J.-M. Quesnel Y. Vanherck J.-C. Marko IE. Tetrahedron  2003,  59:  8989 
  • 17 Yadav JS. Reddy BVS. Reddy SK. Chem. Lett.  2001,  430 
  • 18 Reddy SM. Reddy V. Venkateswarlu Y. Tetrahedron Lett.  2005,  46:  7439 
  • 19 Sabitha G. Reddy GSKK. Reddy KB. Reddy NM. Yadav JS. J. Mol. Catal. A: Chem.  2005,  238:  229 
  • 20a Tanemura K. Suzuki T. Horaguchi T. Bull. Chem. Soc. Jpn.  1994,  67:  290 
  • 20b Kametani T. Kondoh H. Honda T. Ishizone H. Suzuki Y. Mori W. Chem. Lett.  1989,  901 
  • 20c Maiti G. Roy SC. J. Org. Chem.  1996,  61:  6038 
  • 20d Chen Y.-H. Tseng Y.-T. Luh T.-Y. Chem. Commun.  1996,  327 
  • 20e Elmory SS. Bhatt MV. Pelter A. Tetrahedron Lett.  1992,  33:  1657 
  • 20f Rao MN. Kumar P. Singh AP. Reddy RS. Synth. Commun.  1992,  22:  1299 
  • 20g Hoyer S. Laszlo P. Synthesis  1986,  655 
  • 20h Otera J. Nozaki H. Tetrahedron Lett.  1986,  27:  5743 
  • 21 Sharpless KB. Verhoeven TR. Aldrichimica Acta  1979,  12:  63 
  • 22 Salvador JAR. Silvestre SM. Moreira VM. Curr. Org. Chem.  2006,  10:  2227 
  • 23a Enemark JH. Cooney JJA. Wang JJ. Holm RH. Chem. Rev.  2004,  104:  1175 
  • 23b Wilson GL. Greenwood RJ. Pilbrow JR. Spence JT. Wedd AJ. J. Am. Chem. Soc.  1991,  113:  6803 
  • 23c Morris RH. Ressner JM. Sawyer JF. Shiralian M. J. Am. Chem. Soc.  1984,  106:  3683 
  • 23d Sugimoto H. Siren K. Tsukube H. Tanaka K. Eur. J. Inorg. Chem.  2003,  2633 ; and references cited therein
  • 24 Barhate NB. Gajare AS. Wakharkar RD. Sudalai A. Tetrahedron Lett.  1997,  38:  653 
  • 25 Barhate NB. Shinde PD. Mahajan VA. Wakharkar RD. Tetrahedron Lett.  2002,  43:  6031 
  • 26a Maddani MR. Prabhu KR. Tetrahedron Lett.  2008,  49:  4526 
  • 26b Maddani MR. Prabhu KR. Tetrahedron  2010,  66:  329 
  • 27 Kartha KPR. Tetrahedron Lett.  1986,  27:  3415 
  • 30 Kim C. Hoang R. Theodorakis EA. Org. Lett.  1999,  1:  1295 
  • 32 Regeling H. de Rouville E. Chittenden GJF. Recl. Trav. Chim. Pays-Bas  1987,  106:  461 
  • 33a Merino P. Franco S. Mates JA. Merchan FL. Romero P. Tejero T. Uriel S. Matute R. ARKIVOC  2004,  (iv):  48 
  • 33b Goubert M. Toupet L. Sinibaldi ME. Caneta I. Tetrahedron  2007,  63:  8255 
28

It was anticipated that the lactol would be oxidized to the corresponding lactone (2b) under the present reaction conditions. Contrary to our expectation, although the lactol has disappeared during the reaction, the corresponding lactone 2b was not observed.

29

Yield based on the recovery of unreacted starting material 4 (10%).

31

Yield based on the recovery of the unreacted starting material 11 (25%).