Subscribe to RSS
DOI: 10.1055/s-0030-1259958
N,N′-Carbonyldiimidazole-Mediated DBU-Catalyzed One-Pot Synthesis of Urea-Tethered Glycosyl Amino Acids and Glycoconjugates
Publication History
Publication Date:
18 April 2011 (online)
Abstract
An efficient, mild, simple, and alternative one-pot protocol for the synthesis of urea-tethered glycosyl amino acids mediated by N,N′-carbonyldiimidazole employing DBU as a catalyst is described. This protocol is also extended for the synthesis of urea-tethered disaccharides and oligosaccharides.
Key words
urea-tethered glycoconjugates - N,N′-carbonyldiimidazole - DBU - base catalysis
- 1
Varki A. Glycobiology 1993, 3: 97 -
2a
Dwek RA. Chem. Rev. 1996, 96: 683 -
2b
Selvador LA.Eloffson M.Kihlberg J. Tetrahedron 1995, 51: 5643 -
2c
Taylor CM. Tetrahedron 1998, 54: 11317 -
2d
Davis BG. Chem. Rev. 2002, 102: 579 - 3
Kunz H. Angew. Chem., Int. Ed. Engl. 1987, 26: 294 - 4
Marcaurelle LA.Bertozzi CR. Chem. Eur. J. 1999, 5: 1384 -
5a
Cassarco MR.Brown RT. J. Org. Chem. 2003, 68: 8853 -
5b
McDonald FE.Danishefsky SJ. J. Org. Chem. 1992, 57: 7001 -
5c
Khorlin AY.Zurabyan SE.Macharadze RG. Carbohydr. Res. 1980, 85: 201 -
5d
Gustafson GL.Gander JE. Methods Enzymol. 1984, 107: 172 -
5e
Kuijpers BHM.Groothuys S.Keereweer A.Quaedflieg PJLM.Blaauw RH.Delft FLV.Rutjes FPJT. Org. Lett. 2004, 6: 3123 -
5f
Synthesis of Peptides
and Peptidomimetics (Houben-Weyl)
Vol. E22c:
Goodman M.Felix A.Moroder L.Toniolo C. Thieme; Stuttgart: 2003. -
5g
Cho CY.Youngquist RS.Paikoff SJ.Beresini MH.Hebert AR.Berleau LT.Liu CW.Wemmer DE.Keough T.Schultz PG.
J. Am. Chem. Soc. 1998, 120: 7706 -
6a
Choi KH.Hamilton AD. Coord. Chem. Rev. 2003, 240: 101 -
6b
Castellano RK.Nuckolls C.Rebek J.
J. Am. Chem. Soc. 1999, 121: 11156 -
6c
Cho YL.Rudkevich DM.Shivanyuk A.Rissanen K.Rebek J. Chem. Eur. J. 2000, 6: 3788 -
7a
Avalos M.Babiano R.Cintas P.Jimenez J.Palacios JC.Valencia C. Tetrahedron 1993, 49: 2655 -
7b
Avalos M.Babiano R.Cintas P.Jimenez J.Palacios JC.Valencia C. Tetrahedron 1993, 49: 2676 -
7c
Maya I.Lopez O.Maza S.Fernandez-Bolanos JG.Fuentes J. Tetrahedron Lett. 2003, 44: 8539 - 8
Nishiyama T.Ichikawa Y.Isobe M. Synlett 2003, 47 - 9
Park NH.Nguyen HM. Org. Lett. 2009, 11: 2433 -
10a
Kovacs J.Pinter I.Messmer A.Toth G.Duddek H. Carbohydr. Res. 1987, 166: 101 -
10b
Diaz VM.Ortiz C.Fuentes J.Garcia JM. Carbohydr. Res. 1987, 166: 161 - 11
Ichikawa Y.Nishiyama T.Isobe M. Synlett 2000, 1253 -
12a
Ichikawa Y.Matsukawa Y.Nishiyama T.Isobe M. Eur. J. Org. Chem. 2004, 69: 586 -
12b
Ichikawa Y.Nishiyama T.Isobe M. J. Org. Chem. 2001, 66: 4200 -
12c
Ukita C.Hamada A.Yoshida M. Chem. Pharm. Bull. 1964, 12: 454 -
12d
Fischer E. Ber. Dtsch. Chem. Ges. 1914, 47: 1377 -
12e
Johnson TB.Bergmann W. J. Am. Chem. Soc. 1932, 54: 3360 -
12f
Bannister B. J. Antibiot. 1972, 25: 377 -
12g
Pinter I.Kovacs J.Toth G. Carbohydr. Res. 1995, 273: 99 -
13a
Shioiri T.Ninomiya K.Yamada S. J. Am. Chem. Soc. 1972, 94: 6203 -
13b
Sawada D.Sasayama S.Takahashi H.Ikegami S. Tetrahedron Lett. 2006, 47: 7219 -
14a
Dolle RE. J. Comb. Chem. 2001, 3: 477 -
14b
Dolle RE. J. Comb. Chem. 2000, 2: 383 -
15a
Hemantha HP.Chennakrishnareddy G.Vishwanatha TM.Sureshbabu VV. Synlett 2009, 407 -
15b
Sureshbabu VV.Chennakrishnareddy G.Hemantha HP. Synlett 2010, 715 -
16a
Sharma RK. Synlett 2007, 3073 ; and references cited therein -
16b
Zang X.Rodrigues J.Evans L.Hinkle B.Ballantyne L.Pena M. J. Org. Chem. 1997, 62: 6420 -
16c
Fustero S.Torre MG.Sanz-Cervera JF.Arellano CR.Piera J.Simn A. Org. Lett. 2002, 4. 3651 -
16d
Figueiredo RM.Fröhlich R.Christmann M. J. Org. Chem. 2006, 71: 4147 -
16e
Weber AL. Orig. Life Evol. Biosph. 2005, 35: 421 -
16f
Dawson PE.Muir TW.Clark-Lewis I.Kent SBH. Science 1994, 266: 776 -
16g
Dubé P.Fine Nathel NF.Vetelino M.Couturier M.Aboussafy CL.Pichette S.Jorgensen ML.Hardink M. Org. Lett. 2009, 11: 5622 -
16h
Opatz T.Kallus C.Wunberg T.Kunz H. Tetrahedron 2004, 60: 8613 -
16i
Ford MJ.Ley SV. Synlett 1990, 255 - 17
Oakenfull DG.Salvesen K.Jencks WP. J. Am. Chem. Soc. 1971, 93: 188 - 18
Larrivee-Aboussafy C.Jones BP.Price KE.Hardink MA.McLaughlin RW.Lillie BM.Hawkins JM.Vaidyanathan R. Org. Lett. 2010, 12: 324 - 19
Dobashi K.Nagaoka K.Watanabe Y.Nishida M.Hamada M.Takeuchi T.Umezawa H. J. Antibiot. 1985, 1166
References and Notes
The epimerization study was carried
out by ¹H NMR and HPLC analyses of the glycosyl
ureas 3k and 3l synthesized by
the protocol described below.
Glucosamine (2a),was
converted into two epimeric glycosyl ureas 3k and 3l as outlined in Scheme
[³]
by coupling separately
with l-Ala-OMe (1k)
and d-Ala-OMe (1l), respectively.
An equimolar mixture of these two epimers was obtained by coupling
with the racemic mixture of l- and d-Ala-OMe. The ¹H NMR
spectrum of 3k and 3l contained distinct
methyl group doublets at δ = 1.52, 1.54 ppm and δ = 1.55,
1.58 ppm, respectively; whereas the epimeric mixture showed CH3 group
signals at δ = 1.51, 1.54 ppm and δ = 1.56,
1.59 ppm corresponding to two doublets. Additionally, HPLC analysis
of the pure l- and d-Ala-OMe-derived glycosyl
ureas 3k and 3l showed
single peaks at different
t
R values
i.e., t
R = 9.23
and t
R = 9.61
(method: gradient 0.1% TFA H2O-MeCN;
MeCN 30-100% in 30 min), respectively.
General Procedure
for the Preparation of 3a-f
To a suspension
of N,N′-carbonyldiimidazole
(1.2 mmol) in anhydrous CH2Cl2 (10 mL) was
added amino acid ester (1.0 mmol) and DBU (0.2 mmol), and the reaction
mixture was stirred at ambient temperature for 6-7 min.
The glycosyl amine (1.0 mmol) and DBU (0.3 mmol) was then added
at 0 ˚C, and the resulting mixture was stirred
for about 3 h at 0 ˚C. After completion of the
reaction, the resulting solution was diluted with CH2Cl2 (10
mL) and washed with citric acid (2 × 10
mL), H2O (2 × 10 mL), and
brine (10 mL). The organic layer was dried over anhyd Na2SO4,
filtered, and evaporated to obtain the crude product. Pure urea-tethered glycoconjugate
was obtained as a solid on column chromatography eluting with EtOAc-hexane
(4:6).
The procedure followed for the synthesis of 3g-j is
similar to that described above with the only difference being the use
of 0.6 mmol DBU during the addition of the second amine component.
Spectroscopic Data for Compound 3a
White
solid. IR (KBr): νmax = 3385,
1748, 1655, 1560, 1231 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 2.00 (s,
3 H), 2.03 (s, 3 H), 2.05 (s, 3 H), 2.07 (s, 3 H), 3.06 (d, 2 H),
3.69 (s, 3 H), 3.77 (ddd, J = 10.0,
4.3, 2.1 Hz, 1 H), 4.10 (dd, J = 12.3,
1.8 Hz, 1 H), 4.29 (dd, J = 12.3,
4.6 Hz, 1 H), 4.71 (q, J = 7.0 Hz,
6.0 Hz, 1 H), 4.88 (t, J = 9.6
Hz, 1 H), 5.10 (t, J = 9.4
Hz, 1 H), 5.15 (t, J = 9.3
Hz, 1 H), 5.12-5.22 (br, 1 H), 5.33 (d, J = 9.6
Hz, 1 H), 5.40-5.53 (br, 1 H), 7.04-7.16 (m, 2
H), 7.22- 7.35 (m, 3 H) ppm. ¹³C
NMR (75 MHz, CDCl3): δ = 21.0, 21.2,
38.0, 53.1, 54.5, 62.6, 69.5, 70.2, 73.2, 74.3, 81.6, 128.4, 129.1,
130.3, 136.8, 156.5, 169.8, 170.1, 171.0, 171.6, 173.8 ppm.
Spectroscopic Data for Compound 3h
White
solid. IR (KBr): νmax = 1669,
1558, 1229 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 1.31 (s, 3 H),
1.49 (s, 3 H), 2.00 (s, 3 H), 2.02 (s, 3 H), 2.06 (s, 3 H), 2.09
(s, 3 H), 2.14 (s, 3 H), 3.32 (dd, J = 14.6,
5.8 Hz, 1 H), 3.41 (s, 3 H), 3.52 (ddd, J = 15.0,
5.8, 2.6 Hz, 1 H), 3.78 (ddd, J = 10.8,
5.6, 2.4 Hz, 1 H), 3.86 (ddd, J = 10.0,
4.2, 2.2 Hz, 1 H), 4.18 (dd, J = 12.6,
2.0 Hz, 1 H), 4.20 (d, J = 5.8
Hz, 1 H), 4.24 (dd, J = 7.6,
5.5 Hz, 1 H), 4.35 (dd, J = 12.6,
4.0 Hz, 1 H), 4.90 (dd, J = 10.5,
7.5 Hz, 1 H), 4.93 (t, J = 9.5
Hz, 1 H), 4.97 (s, 1 H), 5.12 (t, J = 6.0
Hz, 1 H), 5.15 (t, J = 9.7
Hz, 1 H), 5.19 (t, J = 9.4
Hz, 1 H), 5.36 (t, J = 9.4
Hz, 1 H), 5.47 (br d, J = 9.5
Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 20.9,
21.5, 21.9, 26.8, 27.9, 42.4, 57.3, 63.9, 68.6, 70.5, 72.1, 73.3,
75.8, 76.7, 77.9, 82.1, 99.6, 110.8, 158.2, 170.4, 170.9, 172.0,
173.9, 174.5 ppm.