Synlett 2011(8): 1160-1164  
DOI: 10.1055/s-0030-1259958
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

N,N′-Carbonyldiimidazole-Mediated DBU-Catalyzed One-Pot Synthesis of Urea-Tethered Glycosyl Amino Acids and Glycoconjugates

V. V. Sureshbabu*, Basavaprabhu
Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi, Bangalore University, Bangalore, 560 001, India
e-Mail: hariccb@hotmail.com; e-Mail: sureshbabuvommina@rediffmail.com; e-Mail: hariccb@gmail.com;
Further Information

Publication History

Received 8 November 2010
Publication Date:
18 April 2011 (online)

Abstract

An efficient, mild, simple, and alternative one-pot protocol for the synthesis of urea-tethered glycosyl amino acids mediated by N,N′-carbonyldiimidazole employing DBU as a catalyst is described. This protocol is also extended for the synthesis of urea-tethered disaccharides and oligosaccharides.

    References and Notes

  • 1 Varki A. Glycobiology  1993,  3:  97 
  • 2a Dwek RA. Chem. Rev.  1996,  96:  683 
  • 2b Selvador LA. Eloffson M. Kihlberg J. Tetrahedron  1995,  51:  5643 
  • 2c Taylor CM. Tetrahedron  1998,  54:  11317 
  • 2d Davis BG. Chem. Rev.  2002,  102:  579 
  • 3 Kunz H. Angew. Chem., Int. Ed. Engl.  1987,  26:  294 
  • 4 Marcaurelle LA. Bertozzi CR. Chem. Eur. J.  1999,  5:  1384 
  • 5a Cassarco MR. Brown RT. J. Org. Chem.  2003,  68:  8853 
  • 5b McDonald FE. Danishefsky SJ. J. Org. Chem.  1992,  57:  7001 
  • 5c Khorlin AY. Zurabyan SE. Macharadze RG. Carbohydr. Res.  1980,  85:  201 
  • 5d Gustafson GL. Gander JE. Methods Enzymol.  1984,  107:  172 
  • 5e Kuijpers BHM. Groothuys S. Keereweer A. Quaedflieg PJLM. Blaauw RH. Delft FLV. Rutjes FPJT. Org. Lett.  2004,  6:  3123 
  • 5f Synthesis of Peptides and Peptidomimetics (Houben-Weyl)   Vol. E22c:  Goodman M. Felix A. Moroder L. Toniolo C. Thieme; Stuttgart: 2003. 
  • 5g Cho CY. Youngquist RS. Paikoff SJ. Beresini MH. Hebert AR. Berleau LT. Liu CW. Wemmer DE. Keough T. Schultz PG.
    J. Am. Chem. Soc.  1998,  120:  7706 
  • 6a Choi KH. Hamilton AD. Coord. Chem. Rev.  2003,  240:  101 
  • 6b Castellano RK. Nuckolls C. Rebek J.
    J. Am. Chem. Soc.  1999,  121:  11156 
  • 6c Cho YL. Rudkevich DM. Shivanyuk A. Rissanen K. Rebek J. Chem. Eur. J.  2000,  6:  3788 
  • 7a Avalos M. Babiano R. Cintas P. Jimenez J. Palacios JC. Valencia C. Tetrahedron  1993,  49:  2655 
  • 7b Avalos M. Babiano R. Cintas P. Jimenez J. Palacios JC. Valencia C. Tetrahedron  1993,  49:  2676 
  • 7c Maya I. Lopez O. Maza S. Fernandez-Bolanos JG. Fuentes J. Tetrahedron Lett.  2003,  44:  8539 
  • 8 Nishiyama T. Ichikawa Y. Isobe M. Synlett  2003,  47 
  • 9 Park NH. Nguyen HM. Org. Lett.  2009,  11:  2433 
  • 10a Kovacs J. Pinter I. Messmer A. Toth G. Duddek H. Carbohydr. Res.  1987,  166:  101 
  • 10b Diaz VM. Ortiz C. Fuentes J. Garcia JM. Carbohydr. Res.  1987,  166:  161 
  • 11 Ichikawa Y. Nishiyama T. Isobe M. Synlett  2000,  1253 
  • 12a Ichikawa Y. Matsukawa Y. Nishiyama T. Isobe M. Eur. J. Org. Chem.  2004,  69:  586 
  • 12b Ichikawa Y. Nishiyama T. Isobe M. J. Org. Chem.  2001,  66:  4200 
  • 12c Ukita C. Hamada A. Yoshida M. Chem. Pharm. Bull.  1964,  12:  454 
  • 12d Fischer E. Ber. Dtsch. Chem. Ges.  1914,  47:  1377 
  • 12e Johnson TB. Bergmann W. J. Am. Chem. Soc.  1932,  54:  3360 
  • 12f Bannister B. J. Antibiot.  1972,  25:  377 
  • 12g Pinter I. Kovacs J. Toth G. Carbohydr. Res.  1995,  273:  99 
  • 13a Shioiri T. Ninomiya K. Yamada S. J. Am. Chem. Soc.  1972,  94:  6203 
  • 13b Sawada D. Sasayama S. Takahashi H. Ikegami S. Tetrahedron Lett.  2006,  47:  7219 
  • 14a Dolle RE. J. Comb. Chem.  2001,  3:  477 
  • 14b Dolle RE. J. Comb. Chem.  2000,  2:  383 
  • 15a Hemantha HP. Chennakrishnareddy G. Vishwanatha TM. Sureshbabu VV. Synlett  2009,  407 
  • 15b Sureshbabu VV. Chennakrishnareddy G. Hemantha HP. Synlett  2010,  715 
  • 16a Sharma RK. Synlett  2007,  3073 ; and references cited therein
  • 16b Zang X. Rodrigues J. Evans L. Hinkle B. Ballantyne L. Pena M. J. Org. Chem.  1997,  62:  6420 
  • 16c Fustero S. Torre MG. Sanz-Cervera JF. Arellano CR. Piera J. Simn A. Org. Lett.  2002,  4. 3651 
  • 16d Figueiredo RM. Fröhlich R. Christmann M. J. Org. Chem.  2006,  71:  4147 
  • 16e Weber AL. Orig. Life Evol. Biosph.  2005,  35:  421 
  • 16f Dawson PE. Muir TW. Clark-Lewis I. Kent SBH. Science  1994,  266:  776 
  • 16g Dubé P. Fine Nathel NF. Vetelino M. Couturier M. Aboussafy CL. Pichette S. Jorgensen ML. Hardink M. Org. Lett.  2009,  11:  5622 
  • 16h Opatz T. Kallus C. Wunberg T. Kunz H. Tetrahedron  2004,  60:  8613 
  • 16i Ford MJ. Ley SV. Synlett  1990,  255 
  • 17 Oakenfull DG. Salvesen K. Jencks WP. J. Am. Chem. Soc.  1971,  93:  188 
  • 18 Larrivee-Aboussafy C. Jones BP. Price KE. Hardink MA. McLaughlin RW. Lillie BM. Hawkins JM. Vaidyanathan R. Org. Lett.  2010,  12:  324 
  • 19 Dobashi K. Nagaoka K. Watanabe Y. Nishida M. Hamada M. Takeuchi T. Umezawa H. J. Antibiot.  1985,  1166 
20

The epimerization study was carried out by ¹H NMR and HPLC analyses of the glycosyl ureas 3k and 3l synthesized by the protocol described below.
Glucosamine (2a),was converted into two epimeric glycosyl ureas 3k and 3l as outlined in Scheme  [³] by coupling separately with l-Ala-OMe (1k) and d-Ala-OMe (1l), respectively. An equimolar mixture of these two epimers was obtained by coupling with the racemic mixture of l- and d-Ala-OMe. The ¹H NMR spectrum of 3k and 3l contained distinct methyl group doublets at δ = 1.52, 1.54 ppm and δ = 1.55, 1.58 ppm, respectively; whereas the epimeric mixture showed CH3 group signals at δ = 1.51, 1.54 ppm and δ = 1.56, 1.59 ppm corresponding to two doublets. Additionally, HPLC analysis of the pure l- and d-Ala-OMe-derived glycosyl ureas 3k and 3l showed single peaks at different
t R values i.e., t R = 9.23 and t R = 9.61 (method: gradient 0.1% TFA H2O-MeCN; MeCN 30-100% in 30 min), respectively.

21

General Procedure for the Preparation of 3a-f
To a suspension of N,N′-carbonyldiimidazole (1.2 mmol) in anhydrous CH2Cl2 (10 mL) was added amino acid ester (1.0 mmol) and DBU (0.2 mmol), and the reaction mixture was stirred at ambient temperature for 6-7 min. The glycosyl amine (1.0 mmol) and DBU (0.3 mmol) was then added at 0 ˚C, and the resulting mixture was stirred for about 3 h at 0 ˚C. After completion of the reaction, the resulting solution was diluted with CH2Cl2 (10 mL) and washed with citric acid (2 × 10 mL), H2O (2 × 10 mL), and brine (10 mL). The organic layer was dried over anhyd Na2SO4, filtered, and evaporated to obtain the crude product. Pure urea-tethered glycoconjugate was obtained as a solid on column chromatography eluting with EtOAc-hexane (4:6).
The procedure followed for the synthesis of 3g-j is similar to that described above with the only difference being the use of 0.6 mmol DBU during the addition of the second amine component.
Spectroscopic Data for Compound 3a White solid. IR (KBr): νmax = 3385, 1748, 1655, 1560, 1231 cm. ¹H NMR (300 MHz, CDCl3): δ = 2.00 (s, 3 H), 2.03 (s, 3 H), 2.05 (s, 3 H), 2.07 (s, 3 H), 3.06 (d, 2 H), 3.69 (s, 3 H), 3.77 (ddd, J = 10.0, 4.3, 2.1 Hz, 1 H), 4.10 (dd, J = 12.3, 1.8 Hz, 1 H), 4.29 (dd, J = 12.3, 4.6 Hz, 1 H), 4.71 (q, J = 7.0 Hz, 6.0 Hz, 1 H), 4.88 (t, J = 9.6 Hz, 1 H), 5.10 (t, J = 9.4 Hz, 1 H), 5.15 (t, J = 9.3 Hz, 1 H), 5.12-5.22 (br, 1 H), 5.33 (d, J = 9.6 Hz, 1 H), 5.40-5.53 (br, 1 H), 7.04-7.16 (m, 2 H), 7.22- 7.35 (m, 3 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 21.0, 21.2, 38.0, 53.1, 54.5, 62.6, 69.5, 70.2, 73.2, 74.3, 81.6, 128.4, 129.1, 130.3, 136.8, 156.5, 169.8, 170.1, 171.0, 171.6, 173.8 ppm.
Spectroscopic Data for Compound 3h White solid. IR (KBr): νmax = 1669, 1558, 1229 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.31 (s, 3 H), 1.49 (s, 3 H), 2.00 (s, 3 H), 2.02 (s, 3 H), 2.06 (s, 3 H), 2.09 (s, 3 H), 2.14 (s, 3 H), 3.32 (dd, J = 14.6, 5.8 Hz, 1 H), 3.41 (s, 3 H), 3.52 (ddd, J = 15.0, 5.8, 2.6 Hz, 1 H), 3.78 (ddd, J = 10.8, 5.6, 2.4 Hz, 1 H), 3.86 (ddd, J = 10.0, 4.2, 2.2 Hz, 1 H), 4.18 (dd, J = 12.6, 2.0 Hz, 1 H), 4.20 (d, J = 5.8 Hz, 1 H), 4.24 (dd, J = 7.6, 5.5 Hz, 1 H), 4.35 (dd, J = 12.6, 4.0 Hz, 1 H), 4.90 (dd, J = 10.5, 7.5 Hz, 1 H), 4.93 (t, J = 9.5 Hz, 1 H), 4.97 (s, 1 H), 5.12 (t, J = 6.0 Hz, 1 H), 5.15 (t, J = 9.7 Hz, 1 H), 5.19 (t, J = 9.4 Hz, 1 H), 5.36 (t, J = 9.4 Hz, 1 H), 5.47 (br d, J = 9.5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 20.9, 21.5, 21.9, 26.8, 27.9, 42.4, 57.3, 63.9, 68.6, 70.5, 72.1, 73.3, 75.8, 76.7, 77.9, 82.1, 99.6, 110.8, 158.2, 170.4, 170.9, 172.0, 173.9, 174.5 ppm.