Synthesis 2011(9): 1347-1360  
DOI: 10.1055/s-0030-1259993
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Radical Zinc-Atom Transfer Based Multicomponent Approaches to 3-Alkylidene-Substituted Tetrahydrofurans

Fabrice Chemla*, Florian Dulong, Franck Ferreira, Max P. Nüllen, Alejandro Pérez-Luna*
Institut Parisien de Chimie Moléculaire (UMR 7201), FR 2769, UPMC Univ Paris 06, CNRS, Bâtiment F 2ème et., Case 183, 4 place Jussieu, 75005 Paris, France
Fax: +33(1)44277567; e-Mail: fabrice.chemla@upmc.fr; e-Mail: alejandro.perez_luna@upmc.fr;
Weitere Informationen

Publikationsverlauf

Received 22 December 2010
Publikationsdatum:
07. April 2011 (online)

Abstract

A domino 1,4-addition/alkyne carbozincation sequence based on a radical zinc-atom transfer process is disclosed. Two efficient multicomponent approaches to 3-alkylidenetetrahydrofurans from β-(propargyloxy)enoates bearing pendant alkynes (including ynamides) have been established: one involving the direct addition of dialkylzincs, and the second involving the dimethylzinc-mediated addition of alkyl iodides. Both sequences utilize the stereoselective formation of intermediate alkylidenezincs well suited for in situ functionalization with electrophiles.

1 Introduction

2 1,4-Addition/Cyclization of Dialkylzincs on β-(Propargyl­oxy)enoates

2.1 β-(Propargyloxy)enoates with a Pendant Terminal Alkyne

2.2 β-(Propargyloxy)enoates with a Pendant Substituted Alkyne

2.3 β-(Propargyloxy)enoates with a Pendant Ynamide

3 1,4-Addition/Cyclization of Alkylzinc Halides on β-(Propargyloxy)enoates

4 Dialkylzinc-Mediated 1,4-Addition/Cyclization of Alkyl Iodides on β-(Propargyloxy)enoates

5 Conclusion; Current and Future Work

    References

  • Reviews:
  • 1a Bazin S. Feray L. Bertrand MP. Chimia  2006,  60:  260 
  • 1b Akindele T. Yamada K.-i. Tomioka K. Acc. Chem. Res.  2009,  42:  345 
  • 2 Historical account, see: Seyferth D. Organometallics  2001,  20:  2940 
  • 3a Lewinski J. Marciniac W. Lipkowski J. Justyniak I. J. Am. Chem. Soc.  2003,  125:  12698 
  • 3b Lewinski J. Sliwinski W. Dranka M. Justyniak I. Lipkowski J. Angew. Chem. Int. Ed.  2006,  45:  4826 
  • 3c Lewinski J. Suwala K. Kubisiak M. Ochal Z. Justyniak I. Lipkowski J. Angew. Chem. Int. Ed.  2008,  47:  7888 
  • 3d Lewinski J. Bury W. Dutkiewicz M. Maurin M. Justyniak I. Lipkowski J. Angew. Chem. Int. Ed.  2008,  47:  573 
  • 3e Lewinski J. Koscielski M. Suwala K. Justyniak I. Angew. Chem. Int. Ed.  2009,  48:  7017 
  • 3f Lewinski J. Suwala K. Kaczorowski T. Galezowski M. Gryko DT. Justyniak I. Lipkowski J. Chem. Commun.  2009,  215 
  • 4 Jana S. Berger RJF. Fröhlich R. Pape T. Mitzel NW. Inorg. Chem.  2007,  46:  4293 
  • 5 Mileo E. Benfatti F. Cozzi PG. Lucarini M. Chem. Commun.  2009,  469 
  • 6 Maury J. Feray L. Bazin S. Clément J.-L. Marque SRA. Siri D. Bertrand MP. Chem. Eur. J.  2011,  17:  1586 
  • 7 Davies AG. Roberts BP. Acc. Chem. Res.  1972,  387 ; and references cited therein
  • 8 For the first use of Et2Zn as radical mediator in the presence of oxygen in the context of synthesis, see: Ryu I. Araki F. Minakata S. Komatsu M. Tetrahedron Lett.  1998,  39:  6335 
  • 9 Cohen T. Gibney H. Ivanov R. Yeh EA.-H. Marek I. Curran DP. J. Am. Chem. Soc.  2007,  129:  15405 
  • 10a Bertrand MP. Feray L. Nouguier R. Perfetti P.
    J. Org. Chem.  1999,  64:  9189 
  • 10b Bazin S. Feray L. Siri D. Naubron J.-V. Bertrand MP. Chem. Commun.  2002,  2506 
  • 10c Bazin S. Feray L. Vanthuyne N. Bertrand MP. Tetrahedron  2005,  61:  4261 
  • 10d Bazin S. Feray L. Vanthuyne N. Siri D. Bertrand MP. Tetrahedron  2007,  63:  77 
  • 10e Maury J. Feray L. Perfetti P. Bertrand MP. Org. Lett.  2010,  12:  3590 
  • 11 Van der Deen H. Kellog RM. Feringa BL. Org. Lett.  2000,  2:  1593 
  • 12a Miyabe H. Asada R. Yoshida K. Takemoto Y. Synlett  2004,  540 
  • 12b Miyabe H. Asada R. Takemoto Y. Tetrahedron  2005,  61:  385 
  • 13 Yamada K.-i. Umeki M. Maekawa M. Yamamoto Y. Akindele Y. Nakano M. Tomioka K. Tetrahedron  2008,  64:  7258 
  • 14a Cozzi PG. Angew. Chem. Int. Ed.  2006,  45:  2951 
  • 14b Cozzi PG. Adv. Synth. Catal.  2006,  348:  2075 
  • 14c Cozzi PG. Mignogna A. Vicennati P. Adv. Synth. Catal.  2008,  350:  975 
  • 14d Fernández-Ibañez MA. Maciá B. Minnaard AJ. Feringa BL. Angew. Chem. Int. Ed.  2008,  47:  1317 
  • 14e Cozzi PG. Benfatti F. Guiteras Capdevila M. Mignogna A. Chem. Commun.  2008,  3317 
  • Furthermore, it has been proposed that transition-metal-promoted zinc/iodine exchange involves a radical mechanism, Cu(I):
  • 15a Rozema MJ. AchyuthaRao S. Knochel P. J. Org. Chem.  1992,  57:  1956 
  • Pd(0):
  • 15b Stadtmüller H. Vaupel A. Tucker CE. Stüdemann T. Knochel P. Chem. Eur. J.  1996,  2:  1204 
  • 15c Stadtmüller H. Lentz R. Tucker C. Stüdemann T. Dörner W. Knochel P. J. Am. Chem. Soc.  1993,  115:  7027 
  • Ni(0):
  • 15d Vaupel A. Knochel P. Tetrahedron Lett.  1994,  35:  8349 
  • 15e Vaupel A. Knochel P. J. Org. Chem.  1996,  61:  5743 
  • Mn(II)/Cu(I):
  • 15f Riguet E. Klement I. Kishan Reddy Ch. Cahiez G. Knochel P. Tetrahedron Lett.  1996,  37:  5865 
  • 16a Denes F. Chemla F. Normant J.-F. Angew. Chem. Int. Ed.  2003,  42:  4043 
  • 16b Denes F. Pérez-Luna A. Cutri S. Chemla F. Chem. Eur. J.  2006,  12:  6506 
  • 16c Denes F. Pérez-Luna A. Chemla F. J. Org. Chem.  2007,  72:  398 
  • 16d Giboulot S. Pérez-Luna A. Botuha C. Ferreira F. Chemla F. Tetrahedron Lett.  2008,  49:  3963 
  • 17 Feray L. Bertrand MP. Eur. J. Org. Chem.  2008,  3164 
  • 18 For a related photoinduced reaction, see: Charette AB. Beauchemin A. Marcoux J.-F. J. Am. Chem. Soc.  1998,  120:  5114 
  • For important studies on radical formation by SET from dialkylzinc coordination complexes, see:
  • 19a Wissing E. Rijnberg E. van der Schaaf PA. van Gorp K. Boersma J. van Koten G. Organometallics  1994,  13:  2609 
  • 19b Wissing E. van der Linden S. Rijnberg E. Boersma J. Smeets WJJ. Spek AL. van Koten G. Organometallics  1994,  13:  2602 ; and references cited therein
  • 20 Chen Z. Zhang Y.-X. An Y. Song X.-L. Wang Y.-H. Zhu L.-L. Guo L. Eur. J. Org. Chem.  2009,  5146 
  • 22 Vinylcyclopentyl zinc has been prepared by reductive cyclization: Crandall JK. Ayers TA. Organometallics  1992,  11:  473 
  • 23 Ni(II)-catalyzed intermolecular carbozincation, see: Stüdemann T. Knochel P. Angew. Chem. Int. Ed.  1997,  36:  93 
  • 24 Pérez-Luna A. Botuha C. Ferreira F. Chemla F. Chem. Eur. J.  2008,  14:  8784 
  • Selected examples:
  • 25a Bertrand MT. Courtois G. Migniniac L. Tetrahedron Lett.  1974,  15:  3147 
  • 25b Nakamura M. Fujimoto T. Endo K. Nakamura E. Org. Lett.  2004,  6:  4837 
  • 25c Cantagrel F. Pinet S. Gimbert Y. Chavant PY. Eur. J. Org. Chem.  2005,  2694 
  • Deprotonation of 1a responsible for the formation of 10 could also be effected by Bu2Zn, even though deprotonation of terminal alkynes by dialkylzincs in the absence of ligands is not a fast process, see:
  • 27a Okhlobystin OY. Zakharkin LI. J. Organomet. Chem.  1965,  3:  257 
  • 27b De Koning AJ. Van Rijn PE. Boersma J. Van der Kerk GJM. J. Organomet. Chem.  1979,  174:  129 
  • 27c Pinet S. Pandya SU. Chavant PY. Ayling A. Vallée Y. Org. Lett.  2002,  4:  1463 
  • 28 Cote A. Charette AB. J. Am. Chem. Soc.  2008,  130:  2771 
  • 29 Haaland A. Green JC. McGrady GS. Downs AJ. Gullo E. Lyall MJ. Timberlake J. Tutukin AV. Volden HV. Ostby K.-A. Dalton Trans.  2003,  4356 
  • 30 Bamford CH. Newitt DM. J. Chem. Soc., Abstr.  1946,  688 
  • 32 Guijarro A. In The Chemistry of Organozinc Compounds   Rappoport Z. Marek I. Wiley; Chichester: 2007.  p.193-236  
  • 33 Jourmet M. Malacria M. J. Org. Chem.  1992,  57:  3085 
  • 34 Curran DP. Chen M.-H. Kim DJ. J. Am. Chem. Soc.  1989,  111:  6265 
  • Even though α-silyl stabilization of vinyl radicals leads to a tendency towards linearization:
  • 35a Lalitha S. Chandrasekhar J. Proc.-Indian Acad. Sci., Chem. Sci.  1994,  106:  259 ; they are better represented as very rapidly Z/E interconverting bent radicals:
  • 35b Rubin H. Fischer H. Helv. Chim. Acta  1996,  79:  1670 
  • 35c Bucher G. Mahajan AA. Schmittel M. J. Org. Chem.  2009,  74:  5850 
  • 36a Chechik-Lankin H. Livshin S. Marek I. Synlett  2005,  2098 
  • 36b Prakash Das J. Chechik H. Marek I. Nature Chem.  2009,  1:  128 
  • 37a Gourdet B. Lam HW. J. Am. Chem. Soc.  2009,  131:  3802 
  • 37b Gourdet B. Rudkin ME. Watts CA. Lam HW. J. Org. Chem.  2009,  74:  7849 
  • 38a Yasui H. Yorimitsu H. Oshima K. Chem. Lett.  2007,  36:  32 
  • 38b Yasui H. Yorimitsu H. Oshima K. Bull. Chem. Soc. Jpn.  2008,  81:  373 
  • 39 Marion F. Courillon C. Malacria M. Org. Lett.  2003,  5:  5095 
  • 40a Sato A. Yorimitsu H. Oshima K. Synlett  2009,  28 
  • 40b Sato A. Yorimitsu H. Oshima K. Bull. Korean Chem. Soc.  2010,  31:  570 
  • 41 Banerjee B. Litvinov DN. Kang J. Bettale JD. Castle SL. Org. Lett.  2010,  12:  2650 
  • 43a The Chemistry of Organozinc Compounds   Rappoport Z. Marek I. Wiley; Chichester: 2007. 
  • 43b Knochel P. Millot N. Rodrigues AL. Org. React.  2001,  58:  417 
  • 44 Blake AJ. Shannon J. Stephens JC. Woodward S. Chem. Eur. J.  2007,  13:  2462 
  • 45 Beckwith ALJ. Tetrahedron  1981,  37:  3073 
  • 46a Bertrand MP. Feray L. Nouguier R. Perfetti P. Synlett  1999,  1148 
  • 46b Bertrand MP. Coantic S. Feray L. Nouguier R. Perfetti P. Tetrahedron  2000,  56:  3951 
  • 47a Miyabe H. Ushiro C. Ueda M. Yamakawa K. Naito T. J. Org. Chem.  2000,  65:  176 
  • 47b Miyabe H. Konishi C. Naito T. Org. Lett.  2000,  2:  1443 
  • 48a Yamada K.-i. Yamamoto Y. Maekawa M. Akindele T. Umeki H. Tomioka K. Org. Lett.  2006,  8:  87 
  • 48b Yamada K.-i. Nakano Y. Maekawa M. Akindele T. Tomioka K. Org. Lett.  2008,  10:  3805 
  • 49a Vleeschouwer FD. Van Speybroeck V. Waroquier M. Geerlings P. De Proft F. Org. Lett.  2007,  9:  2721 
  • 49b Fischer H. Radom L. Angew. Chem. Int. Ed.  2001,  40:  1340 
  • 50 Similar stereoselectivities have been reported for other related iodine-atom transfer radical cascades, see for example: Miyabe H. Asada R. Toyoda A. Takemoto Y. Angew. Chem. Int. Ed.  2006,  45:  5863 
  • See,
  • 51a Chinkov N. Tene D. Marek I. In Metal-Catalyzed Cross Coupling Reactions   2nd ed.:  Diederich D. de Meijere A. Wiley-VCH; New York: 2004.  p.395 
  • 51b Denès F. Pérez-Luna A. Chemla F. Chem. Rev.  2010,  110:  2366 
21

Reductive zincation of a vinyl radical has also been suggested to account for the formation of allenoates following zinc-mediated radical addition to propiolates, see ref. 17.

26

See the supporting information in ref. 24.

31

When CH2Cl2 was used as solvent, the Z/E ratio of product 5ha might not fully represent the diastereoselectivity of the zinc-atom transfer since in addition to these two diastereomers, a third tetrahydrofuran side product having incorporated a butyl residue was detected (∼20% yield in the crude) but could not be fully identified. In any case the diastereoselectivity of the reaction between 1h and Bu2Zn in CH2Cl2 should at best be mediocre.

42

See the Supporting Information.