RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259993
Radical Zinc-Atom Transfer Based Multicomponent Approaches to 3-Alkylidene-Substituted Tetrahydrofurans
Publikationsverlauf
Publikationsdatum:
07. April 2011 (online)
Abstract
A domino 1,4-addition/alkyne carbozincation sequence based on a radical zinc-atom transfer process is disclosed. Two efficient multicomponent approaches to 3-alkylidenetetrahydrofurans from β-(propargyloxy)enoates bearing pendant alkynes (including ynamides) have been established: one involving the direct addition of dialkylzincs, and the second involving the dimethylzinc-mediated addition of alkyl iodides. Both sequences utilize the stereoselective formation of intermediate alkylidenezincs well suited for in situ functionalization with electrophiles.
1 Introduction
2 1,4-Addition/Cyclization of Dialkylzincs on β-(Propargyloxy)enoates
2.1 β-(Propargyloxy)enoates with a Pendant Terminal Alkyne
2.2 β-(Propargyloxy)enoates with a Pendant Substituted Alkyne
2.3 β-(Propargyloxy)enoates with a Pendant Ynamide
3 1,4-Addition/Cyclization of Alkylzinc Halides on β-(Propargyloxy)enoates
4 Dialkylzinc-Mediated 1,4-Addition/Cyclization of Alkyl Iodides on β-(Propargyloxy)enoates
5 Conclusion; Current and Future Work
Key words
zinc - radicals - tandem reaction - alkynes - metalation
- Supporting Information for this article is available online:
- Supporting Information
- Reviews:
-
1a
Bazin S.Feray L.Bertrand MP. Chimia 2006, 60: 260 -
1b
Akindele T.Yamada K.-i.Tomioka K. Acc. Chem. Res. 2009, 42: 345 - 2 Historical account, see:
Seyferth D. Organometallics 2001, 20: 2940 -
3a
Lewinski J.Marciniac W.Lipkowski J.Justyniak I. J. Am. Chem. Soc. 2003, 125: 12698 -
3b
Lewinski J.Sliwinski W.Dranka M.Justyniak I.Lipkowski J. Angew. Chem. Int. Ed. 2006, 45: 4826 -
3c
Lewinski J.Suwala K.Kubisiak M.Ochal Z.Justyniak I.Lipkowski J. Angew. Chem. Int. Ed. 2008, 47: 7888 -
3d
Lewinski J.Bury W.Dutkiewicz M.Maurin M.Justyniak I.Lipkowski J. Angew. Chem. Int. Ed. 2008, 47: 573 -
3e
Lewinski J.Koscielski M.Suwala K.Justyniak I. Angew. Chem. Int. Ed. 2009, 48: 7017 -
3f
Lewinski J.Suwala K.Kaczorowski T.Galezowski M.Gryko DT.Justyniak I.Lipkowski J. Chem. Commun. 2009, 215 - 4
Jana S.Berger RJF.Fröhlich R.Pape T.Mitzel NW. Inorg. Chem. 2007, 46: 4293 - 5
Mileo E.Benfatti F.Cozzi PG.Lucarini M. Chem. Commun. 2009, 469 - 6
Maury J.Feray L.Bazin S.Clément J.-L.Marque SRA.Siri D.Bertrand MP. Chem. Eur. J. 2011, 17: 1586 - 7
Davies AG.Roberts BP. Acc. Chem. Res. 1972, 387 ; and references cited therein - 8 For the first use of Et2Zn
as radical mediator in the presence of oxygen in the context of
synthesis, see:
Ryu I.Araki F.Minakata S.Komatsu M. Tetrahedron Lett. 1998, 39: 6335 - 9
Cohen T.Gibney H.Ivanov R.Yeh EA.-H.Marek I.Curran DP. J. Am. Chem. Soc. 2007, 129: 15405 -
10a
Bertrand MP.Feray L.Nouguier R.Perfetti P.
J. Org. Chem. 1999, 64: 9189 -
10b
Bazin S.Feray L.Siri D.Naubron J.-V.Bertrand MP. Chem. Commun. 2002, 2506 -
10c
Bazin S.Feray L.Vanthuyne N.Bertrand MP. Tetrahedron 2005, 61: 4261 -
10d
Bazin S.Feray L.Vanthuyne N.Siri D.Bertrand MP. Tetrahedron 2007, 63: 77 -
10e
Maury J.Feray L.Perfetti P.Bertrand MP. Org. Lett. 2010, 12: 3590 - 11
Van der Deen H.Kellog RM.Feringa BL. Org. Lett. 2000, 2: 1593 -
12a
Miyabe H.Asada R.Yoshida K.Takemoto Y. Synlett 2004, 540 -
12b
Miyabe H.Asada R.Takemoto Y. Tetrahedron 2005, 61: 385 - 13
Yamada K.-i.Umeki M.Maekawa M.Yamamoto Y.Akindele Y.Nakano M.Tomioka K. Tetrahedron 2008, 64: 7258 -
14a
Cozzi PG. Angew. Chem. Int. Ed. 2006, 45: 2951 -
14b
Cozzi PG. Adv. Synth. Catal. 2006, 348: 2075 -
14c
Cozzi PG.Mignogna A.Vicennati P. Adv. Synth. Catal. 2008, 350: 975 -
14d
Fernández-Ibañez MA.Maciá B.Minnaard AJ.Feringa BL. Angew. Chem. Int. Ed. 2008, 47: 1317 -
14e
Cozzi PG.Benfatti F.Guiteras Capdevila M.Mignogna A. Chem. Commun. 2008, 3317 - Furthermore, it has been proposed that transition-metal-promoted zinc/iodine exchange involves a radical mechanism, Cu(I):
-
15a
Rozema MJ.AchyuthaRao S.Knochel P. J. Org. Chem. 1992, 57: 1956 - Pd(0):
-
15b
Stadtmüller H.Vaupel A.Tucker CE.Stüdemann T.Knochel P. Chem. Eur. J. 1996, 2: 1204 -
15c
Stadtmüller H.Lentz R.Tucker C.Stüdemann T.Dörner W.Knochel P. J. Am. Chem. Soc. 1993, 115: 7027 - Ni(0):
-
15d
Vaupel A.Knochel P. Tetrahedron Lett. 1994, 35: 8349 -
15e
Vaupel A.Knochel P. J. Org. Chem. 1996, 61: 5743 - Mn(II)/Cu(I):
-
15f
Riguet E.Klement I.Kishan Reddy Ch.Cahiez G.Knochel P. Tetrahedron Lett. 1996, 37: 5865 -
16a
Denes F.Chemla F.Normant J.-F. Angew. Chem. Int. Ed. 2003, 42: 4043 -
16b
Denes F.Pérez-Luna A.Cutri S.Chemla F. Chem. Eur. J. 2006, 12: 6506 -
16c
Denes F.Pérez-Luna A.Chemla F. J. Org. Chem. 2007, 72: 398 -
16d
Giboulot S.Pérez-Luna A.Botuha C.Ferreira F.Chemla F. Tetrahedron Lett. 2008, 49: 3963 - 17
Feray L.Bertrand MP. Eur. J. Org. Chem. 2008, 3164 - 18 For a related photoinduced reaction,
see:
Charette AB.Beauchemin A.Marcoux J.-F. J. Am. Chem. Soc. 1998, 120: 5114 - For important studies on radical formation by SET from dialkylzinc coordination complexes, see:
-
19a
Wissing E.Rijnberg E.van der Schaaf PA.van Gorp K.Boersma J.van Koten G. Organometallics 1994, 13: 2609 -
19b
Wissing E.van der Linden S.Rijnberg E.Boersma J.Smeets WJJ.Spek AL.van Koten G. Organometallics 1994, 13: 2602 ; and references cited therein - 20
Chen Z.Zhang Y.-X.An Y.Song X.-L.Wang Y.-H.Zhu L.-L.Guo L. Eur. J. Org. Chem. 2009, 5146 - 22 Vinylcyclopentyl zinc has been prepared
by reductive cyclization:
Crandall JK.Ayers TA. Organometallics 1992, 11: 473 - 23 Ni(II)-catalyzed intermolecular
carbozincation, see:
Stüdemann T.Knochel P. Angew. Chem. Int. Ed. 1997, 36: 93 - 24
Pérez-Luna A.Botuha C.Ferreira F.Chemla F. Chem. Eur. J. 2008, 14: 8784 - Selected examples:
-
25a
Bertrand MT.Courtois G.Migniniac L. Tetrahedron Lett. 1974, 15: 3147 -
25b
Nakamura M.Fujimoto T.Endo K.Nakamura E. Org. Lett. 2004, 6: 4837 -
25c
Cantagrel F.Pinet S.Gimbert Y.Chavant PY. Eur. J. Org. Chem. 2005, 2694 - Deprotonation of 1a responsible for the formation of 10 could also be effected by Bu2Zn, even though deprotonation of terminal alkynes by dialkylzincs in the absence of ligands is not a fast process, see:
-
27a
Okhlobystin OY.Zakharkin LI. J. Organomet. Chem. 1965, 3: 257 -
27b
De Koning AJ.Van Rijn PE.Boersma J.Van der Kerk GJM. J. Organomet. Chem. 1979, 174: 129 -
27c
Pinet S.Pandya SU.Chavant PY.Ayling A.Vallée Y. Org. Lett. 2002, 4: 1463 - 28
Cote A.Charette AB. J. Am. Chem. Soc. 2008, 130: 2771 - 29
Haaland A.Green JC.McGrady GS.Downs AJ.Gullo E.Lyall MJ.Timberlake J.Tutukin AV.Volden HV.Ostby K.-A. Dalton Trans. 2003, 4356 - 30
Bamford CH.Newitt DM. J. Chem. Soc., Abstr. 1946, 688 - 32
Guijarro A. In The Chemistry of Organozinc CompoundsRappoport Z.Marek I. Wiley; Chichester: 2007. p.193-236 - 33
Jourmet M.Malacria M. J. Org. Chem. 1992, 57: 3085 - 34
Curran DP.Chen M.-H.Kim DJ. J. Am. Chem. Soc. 1989, 111: 6265 - Even though α-silyl stabilization of vinyl radicals leads to a tendency towards linearization:
-
35a
Lalitha S.Chandrasekhar J. Proc.-Indian Acad. Sci., Chem. Sci. 1994, 106: 259 ; they are better represented as very rapidly Z/E interconverting bent radicals: -
35b
Rubin H.Fischer H. Helv. Chim. Acta 1996, 79: 1670 -
35c
Bucher G.Mahajan AA.Schmittel M. J. Org. Chem. 2009, 74: 5850 -
36a
Chechik-Lankin H.Livshin S.Marek I. Synlett 2005, 2098 -
36b
Prakash Das J.Chechik H.Marek I. Nature Chem. 2009, 1: 128 -
37a
Gourdet B.Lam HW. J. Am. Chem. Soc. 2009, 131: 3802 -
37b
Gourdet B.Rudkin ME.Watts CA.Lam HW. J. Org. Chem. 2009, 74: 7849 -
38a
Yasui H.Yorimitsu H.Oshima K. Chem. Lett. 2007, 36: 32 -
38b
Yasui H.Yorimitsu H.Oshima K. Bull. Chem. Soc. Jpn. 2008, 81: 373 - 39
Marion F.Courillon C.Malacria M. Org. Lett. 2003, 5: 5095 -
40a
Sato A.Yorimitsu H.Oshima K. Synlett 2009, 28 -
40b
Sato A.Yorimitsu H.Oshima K. Bull. Korean Chem. Soc. 2010, 31: 570 - 41
Banerjee B.Litvinov DN.Kang J.Bettale JD.Castle SL. Org. Lett. 2010, 12: 2650 -
43a
The Chemistry of Organozinc Compounds
Rappoport Z.Marek I. Wiley; Chichester: 2007. -
43b
Knochel P.Millot N.Rodrigues AL. Org. React. 2001, 58: 417 - 44
Blake AJ.Shannon J.Stephens JC.Woodward S. Chem. Eur. J. 2007, 13: 2462 - 45
Beckwith ALJ. Tetrahedron 1981, 37: 3073 -
46a
Bertrand MP.Feray L.Nouguier R.Perfetti P. Synlett 1999, 1148 -
46b
Bertrand MP.Coantic S.Feray L.Nouguier R.Perfetti P. Tetrahedron 2000, 56: 3951 -
47a
Miyabe H.Ushiro C.Ueda M.Yamakawa K.Naito T. J. Org. Chem. 2000, 65: 176 -
47b
Miyabe H.Konishi C.Naito T. Org. Lett. 2000, 2: 1443 -
48a
Yamada K.-i.Yamamoto Y.Maekawa M.Akindele T.Umeki H.Tomioka K. Org. Lett. 2006, 8: 87 -
48b
Yamada K.-i.Nakano Y.Maekawa M.Akindele T.Tomioka K. Org. Lett. 2008, 10: 3805 -
49a
Vleeschouwer FD.Van Speybroeck V.Waroquier M.Geerlings P.De Proft F. Org. Lett. 2007, 9: 2721 -
49b
Fischer H.Radom L. Angew. Chem. Int. Ed. 2001, 40: 1340 - 50 Similar stereoselectivities have
been reported for other related iodine-atom transfer radical cascades,
see for example:
Miyabe H.Asada R.Toyoda A.Takemoto Y. Angew. Chem. Int. Ed. 2006, 45: 5863 - See,
-
51a
Chinkov N.Tene D.Marek I. In Metal-Catalyzed Cross Coupling Reactions 2nd ed.:Diederich D.de Meijere A. Wiley-VCH; New York: 2004. p.395 -
51b
Denès F.Pérez-Luna A.Chemla F. Chem. Rev. 2010, 110: 2366
References
Reductive zincation of a vinyl radical has also been suggested to account for the formation of allenoates following zinc-mediated radical addition to propiolates, see ref. 17.
26See the supporting information in ref. 24.
31When CH2Cl2 was used as solvent, the Z/E ratio of product 5ha might not fully represent the diastereoselectivity of the zinc-atom transfer since in addition to these two diastereomers, a third tetrahydrofuran side product having incorporated a butyl residue was detected (∼20% yield in the crude) but could not be fully identified. In any case the diastereoselectivity of the reaction between 1h and Bu2Zn in CH2Cl2 should at best be mediocre.
42See the Supporting Information.