Subscribe to RSS
DOI: 10.1055/s-0030-1260307
The Carbenoid Dihalotriangulane Rearrangement: A Mechanistic Mystery
Publication History
Publication Date:
13 September 2011 (online)
Abstract
This account focuses on the unprecedented carbenoid rearrangement of dihalotriangulanes promoted by treatment with methyllithium. This rearrangement reaction proceeds via a wide variety of intermediates, including carbenoids, carbenes, cations, and organolithium species as well as different halides. Mutual interactions between these intermediates lead to a variety of unusual rearrangement products. The scope and limitations of the unusual dihalotriangulane rearrangement are outlined and some surprising mechanistic features of the reaction are discussed.
1 Introduction
2 First Mechanistic Step: Formation of Carbenoids
3 Ensuing Mechanistic Steps: Transformations of Carbenoids
3.1 Conversions of Carbenoids into Carbenes
3.2 Skeletal (Carbocation-like) Rearrangements of Carbenoids
3.3 Further Transformations of Rearranged Carbenoids
4 Involvement of Intermediate Cations in Other Electrophilic Transformations
5 Final Mechanistic Steps
5.1 Halogenophilic Transformations of Intermediate Organolithiums
5.2 Formation of ‘Dimeric’ Structures
5.3 Transformations of Fluoro-Containing Substrates into Methylated Products
5.4 Pathway Involving the Substitution of Lithium by Hydrogen
6 Conclusion
Key words
gem-dihalo-substituted triangulanes - carbenoids - rearrangements - carbocations - halo-substituted cyclobutenes
- 1
Zefirov NS.Kozhushkov SI.Kuznetsova TS.Kokoreva OV.Lukin KA.Ugrak BI.Tratch SS. J. Am. Chem. Soc. 1990, 112: 7702 ; errata J. Am. Chem. Soc. 1991, 113, 9901 - For reviews, see:
-
2a
Lukin KA.Zefirov NS.Rappoport Z. Wiley; Chichester (UK): 1995. p.861-885 -
2b
Zefirov NS.Kuznetsova TS.Zefirov AN. Izv. Akad. Nauk, Ser. Khim. 1995, 1613 ; Russ. Chem. Bull. 1995, 44, 1543 -
2c
de Meijere A.Kozhushkov SI. Chem. Rev. 2000, 100: 93 -
2d
de Meijere A.Kozhushkov SI. Chem. Rev. 2006, 106: 4926 -
3a
Lukin KA.Kozhushkov SI.Andrievsky AA.Ugrak BI.Zefirov NS. J. Org. Chem. 1991, 56: 6176 -
3b
Zefirov NS.Kozhushkov SI.Ugrak BI.Lukin KA.Kokoreva OV.Yufit DS.Struchkov YuT.Zöllner S.Boese R.de Meijere A. J. Org. Chem. 1992, 57: 701 -
3c
Lukin KA.Masunova AYu.Ugrak BI.Zefirov NS. Tetrahedron 1991, 47: 5769 -
3d
Lukin KA.Kozhushkov SI.Andrievsky AA.Ugrak BI.Zefirov NS. Mendeleev Commun. 1992, 51 -
3e
de Meijere A.Kozhushkov SI.Spaeth T.Zefirov NS.
J. Org. Chem. 1993, 58: 502 -
3f
de Meijere A.Kozhushkov SI.Zefirov NS. Synthesis 1993, 681 -
3g
Zefirov NS.Kuznetsova TS.Eremenko OV.Kokoreva OV. Mendeleev Commun. 1993, 91 -
3h
Kuznetsova TS.Eremenko OV.Kokoreva OV.Zatonsky GV.Zefirov NS. Mendeleev Commun. 1994, 172 -
3i
Zefirov NS.Kuznetsova TS.Eremenko OV.Kokoreva OV.Zatonsky GV.Ugrak BI. J. Org. Chem. 1994, 59: 4087 -
3j
de Meijere A.Seebach M.Zöllner S.Kozhushkov SI.Belov VN.Boese R.Haumann T.Benet-Buchholz J.Yufit DS.Howard JA. Chem. Eur. J. 2001, 7: 4021 -
4a
Doering WE.LaFlamme PM. Tetrahedron 1958, 2: 75 -
4b
Sydnes IK. Chem. Rev. 2003, 103: 1133 -
4c
Kostikov RR.Molchanov AP.Hopf H. Top. Curr. Chem. 1990, 155: 41 - 5
Lukin KA.Zefirov NS.Yufit DS.Struchkov YT. Tetrahedron 1992, 48: 9977 - Diiodides of type 4c may be also obtained from either diiodotriangulanes 1c or, more instructively, from dibromides 1b upon the addition of 1-3 moles of dry LiI; it is interesting to note that a large excess of LiI deactivates MeLi, see:
-
6a
Talalaeva T.Rodionov A.Kocheshkov KA. Dokl. Akad. Nauk SSSR 1961, 140: 847 ; Chem. Abstr. 1962, 56, 5989f -
6b
Novak DP.Brown TL. J. Am. Chem. Soc. 1972, 94: 3793 - See also:
-
6c
Leacachey B.Oulyadi H.Lameiras P.Harrison-Marchand A.Gerard H.Maddaluno J. J. Org. Chem. 2010, 75: 5976 -
7a
Kobrich G.Akhtar A.Ansan F.Breckoff WE.Buttner H.Drischel W.Fischer RH.Flory K.Frohlich H.Goyert W.Heinemann H.Hornke I.Merkle HR.Trapp H.Zundorf W. Angew. Chem. Int. Ed. Engl. 1967, 6: 41 -
7b
Taylor KG.Chaney J. J. Am. Chem. Soc. 1976, 98: 4158 -
7c
Gawronska KJ.Gawronski HM.Walborsky HM. J. Org. Chem. 1991, 56: 2193 -
7d
Fedorinski M. Chem. Rev. 2003, 103: 1099 ; and in particular p 1118 -
7e
Schleyer PVR.Clark T.Kos AJ.Spitznagel GW.Rohde C.Arad D.Houk KN.Rondan NG. J. Am. Chem. Soc. 1984, 106: 6467 -
8a
Averina EB.Kuznetsova TS.Zefirov AN.Koposov AE.Grishin YuK.Zefirov NS. Mendeleev Commun. 1999, 101 -
8b
Sedenkova KN.Averina EB.Gris hin YK.Kuznetsova TS.Zefirov NS. Zh. Org. Khim. 2008, 44: 962 ; Russ. J. Org. Chem. (Engl. Transl.) 2008, 44, 950 -
9a
Averina EB.Sedenkova KN.Grishin YK.Kuznetsova TS.Zefirov NS. ARKIVOC 2008, (iv): 71 -
9b
Averina EB.Karimov RR.Sedenkova KN.Grishin YK.Kuznetsova TS.Zefirov NS. Tetrahedron 2006, 62: 8814 -
9c
Averina EB.Kuznetsova TS.Lysov AE.Potekhin KA.Zefirov NS. Dokl. Acad. Nauk 2000, 375: 481 ; Dokl. Chem. (Engl. Transl.) 2000, 375, 257 - We were kindly informed by Professor P. Vollhardt that one example of such a rearrangement had been presented in a dissertation by S. Zöllner; however, this was discussed in terms of a usual solvolytic carbocationic process:
-
9d
Zöllner S. Dissertation University of Hamburg (Germany): 1991. -
10a
Averina EB.Sedenkova KN.Borisov IS.Grishin YK.Kuznetsova TS.Zefirov NS. Tetrahedron 2009, 65: 5693 -
10b
Sedenkova KN.Averina EB.Grishin YK.Kuznetsova TS.Zefirov NS. Tetrahedron 2010, 66: 8089 -
10c
Sedenkova KN.Averina EB.Grishin YK.Rybakov VB.Kuznetsova TS.Zefirov NS. Eur. J. Org. Chem. 2010, 4145 - 13
Ando K. J. Org. Chem. 2006, 71: 1837 - 14
Ward HR.Lawler RG.Loken HY. J. Am. Chem. Soc. 1968, 90: 7359 -
15a
Zefirov NS.Makhon’kov DI. Chem. Rev. 1982, 82: 615 -
15b
Grinblat J.Ben-Zion M.Hoz S. J. Am. Chem. Soc. 2001, 123: 10738 -
15c
Matveeva ED.Podrugina TA.Zefirov NS. Mendeleev Commun. 1998, 21 -
16a
Glukhovtsev MN.Pross A.Schlegel B.Bach RD.Radom L. J. Am. Chem. Soc. 1996, 118: 11258 -
16b
Glukhovtsev MN.Pross A.Radom L. J. Am. Chem. Soc. 1996, 118: 6273 -
16c
Kobychev VB.Vitkovskaya NM.Abramov AV.Timokhin BV. Zh. Obshch. Khim. 1999, 69: 820 ; Russ. J. Gen. Chem. (Engl. Transl.) 1999, 69, 788 -
17a
Bailey WF.Gagnier RP.Patricia JJ. J. Org. Chem. 1984, 49: 2098 -
17b
Eccles W.Jasinski M.Kaszynski P.Zienkiewicz K.Stulgies B.Jankowiak A. J. Org. Chem. 2008, 73: 5732 - 18
Müller C.Stier F.Weyerstahl P. Chem. Ber. 1977, 110: 124 -
19a
Azizogly A.Demirkol O.Kilic T.Yildiz YK. Tetrahedron 2007, 63: 2409 -
19b
Ozen R.Balci M. Tetrahedron 2002, 58: 3079 -
19c
Christl M.Braun M.Müller G. Angew. Chem. Int. Ed. Engl. 1992, 31: 473 ; Angew. Chem. 1992, 104, 471 - For example, ”it was and still is indeed remarkable that ... carbenoids (anions!) are electrophilic enough to react with rather weakly nucleophilic bonds”, see:
-
20a
Boche G.Lohrenz JCW. Chem. Rev. 2001, 101: 697 -
20b
Taylor KG.Chaney J.Deck JC. J. Am. Chem. Soc. 1976, 98: 4163 -
20c
Topolski M.Duraisami M.Rachon J.Gawronski J.Goedken V.Walborsky HM. J. Org. Chem. 1993, 58: 546 - 21
Skattebol L. Tetrahedron 1967, 23: 1107 -
23a
Appelquist DE.Johnston MR.Fisher F. J. Am. Chem. Soc. 1970, 92: 4614 -
23b
Gajewski JJ.Chang MJ. J. Org. Chem. 1978, 43: 765 -
24a
Jonson CS.Weiner MA.Waugh JS.Seyfert D.
J. Am. Chem. Soc. 1961, 83: 1306 -
24b
West P.Purmort JI.McKinley SV. J. Am. Chem. Soc. 1968, 90: 797 -
26a
Borer M.Neuenschwander M. Helv. Chim. Acta 1997, 80: 2486 -
26b
Loosli T.Borer M.Kulakovska I.Minger A.Neuenschwander M. Helv. Chim. Acta 1995, 78: 1144 -
27a
Kitatani K.Hiyama T.Nozaki H. J. Am. Chem. Soc. 1975, 97: 949 -
27b
Holm KH.Skattebol L. J. Am. Chem. Soc. 1977, 99: 5480 -
28a
Rachon J.Goedken V.Walborsky HM. J. Am. Chem. Soc. 1986, 108: 7435 -
28b
Pearlman BA.Putt SR.Fleming JA. J. Org. Chem. 2006, 71: 5646 - 29
Warner PM.Chang S.-C.Koszewski NJ. Tetrahedron Lett. 1985, 26: 5371
References
Only one example of the unusual reactivity
of gem-bromofluoropolyspirocyclopropanes
is known. This involves the treatment of highly spirocyclopropanated fluorobromo[15]triangulane
with butyllithium at -10 to
-5 ˚C
which led to a remarkable skeletal rearrangement accompanied by
two consecutive cyclopropylcarbene to cyclobutene ring enlargements
and the incorporation of two n-butyl
groups, resulting in a bicyclo[2.2.0]hexane derivative
as the main product; this is described on p 4970 of the following:
See ref. 2d.
This is remarkable because many publications exist concerning reactions of dibromides of type 1 with alkyllithium where the rearrangement products are not formed.
22For clarity, we use here the pure carbocationic stepwise presentation, thus ignoring the problem of the concerted nature of mechanistic steps.
25For simplicity, we use here only one resonance structure, 29; obviously this process may be also equivalently treated as electrophilic substitution in the aromatic ring.