Synlett 2011(10): 1444-1448  
DOI: 10.1055/s-0030-1260555
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Potassium Hydroxide Catalyzed Addition of Arylamines to Styrenes

Daniel Jaspers, Sven Doye*
Institut für Reine und Angewandte Chemie, Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
Fax: +49(441)7983329; e-Mail: doye@uni-oldenburg.de;
Further Information

Publication History

Received 7 February 2011
Publication Date:
05 May 2011 (online)

Abstract

Potassium hydroxide is a competent and cheap catalyst for the intermolecular addition of arylamines to styrenes. The reactions are performed in nontoxic dimethyl sulfoxide and can be used for the large-scale synthesis of β-phenylethylamines.

    References and Notes

  • For recent reviews, see:
  • 1a Müller TE. Beller M. Chem. Rev.  1998,  98:  675 
  • 1b Brunet JJ. Neibecker D. In Catalytic Heterofunctionalization   Togni A. Grützmacher H. Wiley-VCH; Weinheim: 2001.  p.91 
  • 1c Bytschkov I. Doye S. Eur. J. Org. Chem.  2003,  935 
  • 1d Pohlki F. Doye S. Chem. Soc. Rev.  2003,  32:  104 
  • 1e Alonso F. Beletskaya IP. Yus M. Chem. Rev.  2004,  104:  3079 
  • 1f Doye S. Synlett  2004,  1653 
  • 1g Odom AL. Dalton Trans.  2005,  225 
  • 1h Hultzsch KC. Adv. Synth. Catal.  2005,  347:  367 
  • 1i Hultzsch KC. Org. Biomol. Chem.  2005,  3:  1819 
  • 1j Severin R. Doye S. Chem. Soc. Rev.  2007,  36:  1407 
  • 1k Brunet J.-J. Chu N.-C. Rodriguez-Zubiri M. Eur. J. Inorg. Chem.  2007,  4711 
  • 1l Lee AV. Schafer LL. Eur. J. Inorg. Chem.  2007,  2243 
  • 1m Müller TE. Hultzsch KC. Yus M. Foubelo F. Tada M. Chem. Rev.  2008,  108:  3795 
  • 2 For a review on base-catalyzed hydroaminations, see: Seayad J. Tillack A. Hartung CG. Beller M. Adv. Synth. Catal.  2002,  344:  795 
  • For selected examples of base-catalyzed intermolecular hydroaminations, see:
  • 3a Lehmkuhl H. Reinehr D.
    J. Organomet. Chem.  1973,  55:  215 
  • 3b Beller M. Breindl C. Tetrahedron  1998,  54:  6359 
  • 3c Beller M. Breindl C. Riermeier TH. Eichberger M. Trauthwein H. Angew. Chem. Int. Ed.  1998,  37:  3389 ; Angew. Chem. 1998, 110, 3571
  • 3d Tzalis D. Koradin C. Knochel P. Tetrahedron Lett.  1999,  40:  6193 
  • 3e Hartung CG. Breindl C. Tillack A. Beller M. Tetrahedron  2000,  56:  5157 
  • 3f Beller M. Breindl C. Seijas JA. Vázquez-Tato MP. Martínez MM. Synlett  2001,  875 
  • 3g Beller M. Breindl C. Chemosphere  2001,  43:  21 
  • 3h Horrillo-Martínez P. Hultzsch KC. Gil A. Branchadell V. Eur. J. Org. Chem.  2007,  3311 
  • For selected examples of base-catalyzed intramolecular hydroaminations, see:
  • 4a Ates A. Quinet C. Eur. J. Org. Chem.  2003,  1623 
  • 4b Martínez PH. Hultzsch KC. Hampel F. Chem. Commun.  2006,  2221 
  • 4c Ogata T. Ujihara A. Tsuchida S. Shimizu T. Kaneshige A. Tomioka K. Tetrahedron Lett.  2007,  48:  6648 
  • 4d Quinet C. Jourdain P. Hermans C. Ates A. Lucas I. Markó IE. Tetrahedron  2008,  64:  1077 
  • 5 Kumar K. Michalik D. Garcia Castro I. Tillack A. Zapf A. Arlt M. Heinrich T. Böttcher H. Beller M. Chem. Eur. J.  2004,  10:  746 
  • 9 A base-catalyzed addition of the DMSO anion to styrene has been reported: Walling C. Bollyky L. J. Org. Chem.  1964,  29:  2699 
  • 10 Azeotropic data of H2O-hexane: TAz = 61.6 ˚C, PAz = 101.33 kPa; ywater = 0.2110. See: Lide DR. Handbook of Chemistry and Physics   87th ed.:  CRC Press; Boca Raton: 2006.  p.6-161  
6

Gaylord Chemical Company, L.L.C. http://www.gaylordchemical.com/bulletins/Bulletin102B/Bulletin102B.pdf (accessed Jan 28, 2011).

7

General Procedure Exemplified by the Reaction of Styrene (1) with p -Toluidine (2)
An oven-dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was transferred to a nitrogen-filled glove box and charged with p-toluidine (343 mg, 3.2 mmol), styrene (208 mg, 2.0 mmol), dry DMSO (1.0 mL), and KOH (99.99% from Sigma-Aldrich, 6 mg, 0.1 mmol, 5 mol%). The tube was sealed, and the resulting mixture was heated to 70 ˚C for 4 h. After the tube had been cooled to r.t. the reaction mixture was poured into an aq NaOH solution (1 M, 10 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried (MgSO4) and concentrated under vacuum in the presence of Celite®. Finally, the crude product was purified by flash chromatography (light PE-EtOAc, 20:1) to give amine 3a (359 mg, 1.7 mmol, 85%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl3): δ = 2.22 (s, 3 H), 2.86 (t, J H,H = 7.1 Hz, 2 H), 3.33 (t, J H,H = 7.1 Hz, 2 H), 3.46 (s, 1 H, NH), 6.51 (d, J H,H = 8.2 Hz, 2 H), 6.97 (d, J H,H = 8.0 Hz, 2 H), 7.16-7.23 (m, 3 H), 7.26-7.31 (m, 2 H) ppm. ¹³C NMR (126 MHz, DEPT, CDCl3): δ = 20.3 (CH3), 35.4 (CH2), 45.3 (CH2), 113.1 (CH), 126.3 (CH), 126.5 (C), 128.5 (CH), 128.7 (CH), 129.7 (CH), 139.3 (C), 145.7 (C) ppm. IR (neat): ν = 3404, 3025, 2918, 2861, 1615, 1519, 1318, 1259, 1182, 1080, 1031, 808, 699 cm. HRMS (70 eV): m/z calcd for C15H17N: 211.1361; found: 211.1365.

8

Under comparable conditions, much lower yields were obtained with toluene (<5%), 1,4-dioxane (<5%), THF (9%), and DME (9%).