Synlett, Table of Contents LETTER © Georg Thieme Verlag Stuttgart ˙ New York Hypervalent Iodine(III)-LiX Combination in Fluoroalcohol Solvent for Aromatic Halogenation of Electron-Rich Arenecarboxylic Acids Hiromi Hamamoto, Sho Hattori, Kaori Takemaru, Yasuyoshi Miki*School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, JapanFax: +81(6)67212505; e-Mail: y_miki@phar.kindai.ac.jp; Recommend Article Abstract Buy Article All articles of this category Abstract The novel reagent system, PhI(OAc)2-LiX combination in fluoroalcohol solvents, was found to be effective for halodecarboxylation of electron-rich arenecarboxylic acids. The method provided an efficient route to halogenated phenol ether derivatives. Key words carboxylic acids - hypervalent iodine - halogenation - fluoroalchol - decarboxylation Full Text References References and Notes 1a Baudoin O. Angew. Chem. Int. Ed. 2007, 46: 1373 1b Gooßen LJ. Rodriguez N. Gooßen K. Angew. Chem. Int. Ed. 2008, 47: 3100 1c Gooßen LJ. Gooßen K. Rodriguez N. Blanchot M. Linder C. Zimmermann B. Pure. Appl. Chem. 2008, 80: 1725 Selected recent examples: 2a Myers AG. Tanaka D. Mannion MR. J. Am. Chem. Soc. 2002, 124: 11250 2b Tanaka D. Myers AG. Org. Lett. 2004, 6: 433 2c Tanaka D. Romeril SP. Myers AG. J. Am. Chem. Soc. 2005, 127: 10323 2d Gooßen LJ. Deng G. Levy LM. Science 2006, 313: 662 2e Dickstein JS. Mulrooney CA. O’Brien EM. Morgan BJ. Kozlowski MC. Org. Lett. 2007, 9: 2441 2f Gooßen LJ. Rodriguez N. Linder C. J. Am. Chem. Soc. 2008, 130: 15248 2g Sun Z.-M. Zhao P. Angew. Chem. Int. Ed. 2009, 48: 6726 2h Shang R. Fu Y. Wang Y. Xu Q. Yu H.-Z. Liu L. Angew. Chem. Int. Ed. 2009, 48: 9350 2i Zhang M. Zhou J. Kan J. Wang M. Su W. Hong M. Chem. Commun. 2010, 46: 5455 2j Zhang S.-L. Fu Y. Shang R. Guo Q.-X. Liu L. J. Am. Chem. Soc. 2010, 132: 638 3a Borodin B. Justus Liebigs Ann. Chem. 1861, 119: 121 3b Hunsdiecker H. Hunsdiecker C. Ber. Dtsch. Chem. Ges. 1942, 75: 291 3c Johnson RG. Ingham RK. Chem. Rev. 1956, 56: 219 3d Wilson CV. Org. React. 1957, 9: 332 3e Sheldon RA. Kochi JK. Org. React. 1972, 19: 279 3f Jacques J. C. R. Acad. Sci., Ser. IIc. 1999, 2: 181 4a Cristol SJ. Firth WC. J. Org. Chem. 1961, 26: 280 4b Kochi JK. J. Am. Chem. Soc. 1965, 87: 2500 4c Barton DHR. Faro HP. Serebryakov EP. Woolsey NF. J. Chem. Soc. 1965, 2438 4d McKillop A. Bromley D. Taylor EC. J. Org. Chem. 1969, 34: 1172 4e Cason J. Walba DM. J. Org. Chem. 1972, 37: 669 4f Cambie RC. Hayward RC. Jurlina JL. Rutledge PS. Woodgate PD. J. Chem. Soc., Perkin Trans. 1 1981, 2608 4g Barton DHR. Crich D. Motherwell WB. Tetrahedron 1985, 41: 3901 4h Sinha J. Layek S. Mandal GC. Bhattacharjee M. Chem. Commun. 2001, 1916 4i Koo B.-S. Kim E.-H. Lee K.-J. Synth. Commun. 2002, 32: 2275 4j Das JP. Sinha P. Roy S. Org. Lett. 2002, 4: 3055 5 Hypervalent Iodine Chemistry, In Topics in Current Chemistry Vol. 224: Wirth T. Springer; Berlin: 2003. 6a Varvoglis A. Tetrahedron 1997, 53: 1179 6b Togo H. Katohgi M. Synlett 2001, 565 6c Zhdankin VV. Stang PJ. Chem. Rev. 2002, 102: 2523 6d Minatti A. Synlett 2003, 140 6e Moriarty RM. J. Org. Chem. 2005, 70: 2893 6f Wirth T. Angew. Chem. Int. Ed. 2005, 44: 3656 6g Zhdankin VV. Stang PJ. Chem. Rev. 2008, 108: 5299 6h Dohi T. Kita Y. Chem. Commun. 2009, 2073 6i Uyanik M. Ishihara K. Chem. Commun. 2009, 2086 Selected examples: 7a Burnett DA. Hart DJ. J. Org. Chem. 1987, 52: 5662 7b Eberson L. Hartshorn MP. Persson O. Acta Chem. Scand. 1995, 49: 640 7c Hamamoto H. Anilkumar G. Tohma H. Kita Y. Chem. Commun. 2002, 450 7d Hamamoto H. Hata K. Nambu H. Tohma H. Kita Y. Tetrahedron Lett. 2004, 45: 2293 7e Taylor SR. Ung AT. Pyne SG. Skelton BW. White AH. Tetrahedron 2007, 63: 11377 8a Concepcion JI. Francisco CG. Freire R. Hernandez R. Salazar JA. Suarez E. J. Org. Chem. 1986, 51: 402 8b Singh R. Just G. Synth. Commun. 1988, 18: 1327 8c Graven A. Joergensen KA. Dahl S. Stanczak A. J. Org. Chem. 1994, 59: 3543 8d Camps P. Lukach AE. Pujol X. Vazquez S. Tetrahedron 2000, 56: 2703 8e Telvekar VN. Arote ND. Herlekar OP. Synlett 2005, 2495 9a Umemoto H. Umemoto M. Ohta C. Dohshita M. Tanaka H. Hattori S. Hamamoto H. Miki Y. Heterocycles 2009, 78: 2845 9b Hamamoto H. Umemoto H. Umemoto M. Ohta C. Dohshita M. Miki Y. Synlett 2010, 2593 10a Braddock DC. Cansell G. Hermitage SA. Synlett 2004, 461 10b Murai T. Togo H. Yokoyama M. Synlett 1998, 286 10c Togo H. Nogami G. Yokoyama M. Synlett 1998, 534 11a Kita Y. Tohma H. Hatanaka K. Takada T. Fujita S. Mitoh S. Sakurai H. Oka S. J. Am. Chem. Soc. 1994, 116: 3684 11b Kita Y. Takada T. Tohma H. Pure Appl. Chem. 1996, 68: 627 11c Ito M. Ogawa C. Yamaoka N. Fujioka H. Dohi T. Kita Y. Molecules 2010, 15: 1918 11d Dohi T. Yamaoka N. Kita Y. Tetrahedron 2010, 66: 5775 12a Eberson L. Hartshorn MP. Persson O. Radner F. Chem. Commun. 1996, 2105 12b Shuklov IA. Dubrovina NV. Boerner A. Synthesis 2007, 2925 12c Begue J.-P. Bonnet-Delpon D. Crousse B. Synlett 2004, 18 12d Eberson L. Hartshorn MP. Persson O. J. Chem. Soc., Perkin Trans. 2 1995, 1735 13a Lee S. Hua Y. Park H. Flood AH. Org. Lett. 2010, 12: 2100 13b Zornik D. Meudtner RM. Malah TE. Thiele CM. Hecht S. Chem. Eur. J. 2011, 17: 1473 14 Compound 3b was also obtained as minor product into the iodination of 1a where 3b was not converted to 4b smoothly (<10%) in further iodination reaction [PhI(OAc)2/LiI combination in HFIP]. Supplementary Material Supplementary Material Supporting Information