Subscribe to RSS
DOI: 10.1055/s-0030-1260793
Constrained Tetramic Acids, Homostreptopyrrolidine, and their Analogues Based on Unusual Intramolecular Wittig Olefination with Phosphorus Ylides
Publication History
Publication Date:
15 June 2011 (online)
Abstract
The synthesis of bicyclic tetramic acids based on the ‘nonclassical’ intramolecular Wittig reaction catalyzed by the corresponding phosphonium salt was developed. We have found that such applications proceed smoothly with high yield with N-substituted aminobutanolides when catalyzed with hydrochloride salt of the starting aminolactones. In addition, a convenient multigram synthesis of optically pure 4-hydroxy-5-substituted pyrrolidinones, including homostreptopyrrolidine as methylene homologues of naturally occurring streptopyrrolidine, via two consecutive reduction is also developed.
Key words
intramolecular Wittig - streptopyrrolidine analogues - tetramic acid - Wittig olefination - N-debenzylation
- For a review on synthesis and use of tetramic acid derivatives, see:
-
1a
Schobert R.Schlenk A. Bioorg. Med. Chem. 2008, 16: 4203 -
1b
Athanasellis G.Igglessi-Markopoulou O.Markopoulos J. Bioinorg. Chem. Appl. 2010, 315056 -
1c
Andrews MD.Brewster A.Moloney MG. Tetrahedron: Asymmetry 1994, 5: 1477 -
1d
Andrews MD.Brewster AG.Moloney MG.Owen KL. J. Chem. Soc., Perkin Trans. 1 1996, 227 -
1e
Andrews MD.Brewster A.Moloney MG. Synlett 1996, 612 -
1f
Andrews MD.Brewster AG.Crapnell KM.Ibbett AJ.Jones T.Moloney MG.Prout K.Watkin D. J. Chem. Soc., Perkin Trans. 1 1998, 223 -
1g
Jeong Y.-C.Moloney MG. Synlett 2009, 2487 -
2a
Pifferi G, andPinza M. inventors; US 4118396. -
2b
Aschwanden W, andKyburz E. inventors; US 4,476,308. -
2c
Miyamoto S.Mori A. Neurosciences 1985, 11: 1 -
2d
Iriuchijima S,Kobayashi H,Aoki K,Oda T,Shinoyama M, andNosaka Y. inventors; US 4,686,296. -
2e
Pinza M, andPfeiffer UC. inventors; US 4,797,496. -
2f
Jeong Y.-C.Hwang SK.Ahn K.-H. Bull. Korean Chem. Soc. 2005, 26: 826 - 3
Courcambeck J.Bihel F.De Michelis C.Quéléver G.Kraus JL. J. Chem. Soc., Perkin Trans. 1 2001, 1421 - 4
Schobert R.Wicklein A. Synthesis 2007, 1499 - 5
Wittenberger SJ.Baker WR.Donner BG. Tetrahedron 1993, 49: 1547 -
6a
Gennari C.Moresca D.Vulpetti A.Pain G. Tetrahedron 1997, 53: 5593 -
6b
Reddy GV.Rao GV.Iyengar DS. Tetrahedron Lett. 1999, 40: 775 - 7
Shioiri T.Hayshi K.Hamada Y. Tetrahedron 1993, 49: 1913 - 8
Mattern R.-H. Tetrahedron Lett. 1996, 37: 291 -
9a
Huang PQ.Zheng X.Wang SL.Ye JL.Jin LR.Chen Z. Tetrahedron: Asymmetry 1999, 10: 3309 -
9b
Park TH.Paik S.Lee SH. Bull. Korean Chem. Soc. 2003, 24: 1227 - 10
Coleman RS.Walczak MC.Campbell EL. J. Am. Chem. Soc. 2005, 127: 16038 -
11a
Agatsuma T.Akama T.Nara S.Matsumiya S.Nakai R.Ogawa H.Otaki S.Ikeda S.-i.Saitoh Y.Kanda Y. Org. Lett. 2002, 4: 4387 -
11b
Hoye TR.Dvornikovs V. J. Am. Chem. Soc. 2006, 128: 2550 - 12
Du J.-X.Huang H.-Y.Huang PQ. Tetrahedron: Asymmetry 2004, 15: 3461 - 13
Oba M.Ito C.Hayashi T.Nishiyama K. Tetrahedron Lett. 2009, 50: 25053 -
14a
Poncet J.Jouin P.Castro B.Nicolas L.Boutar M.Gaudemer A. J. Chem. Soc., Perkin Trans. 1 1990, 611 -
14b
Kondekar NB.Kandula SRV.Kumar P. Tetrahedron Lett. 2004, 45: 5477 - 15
Shin HJ.Kim TS.Lee HS.Park JY.Choi IK.Kwon HJ. Phytochemistry 2008, 69: 2363 -
16a
Xiang S.-H.Yuan H.-Q.Huang P.-Q. Tetrahedron: Asymmetry 2009, 20: 2021 -
16b
Ye ZB.Chen J.Meng WH.Huang PQ. Tetrahedron: Asymmetry 2010, 21: 895 -
17a
Schobert R.Gordon GJ. Curr. Org. Chem. 2002, 6: 1181 -
17b
Schobert R. Org. Synth. 2005, 82: 140 -
17c
Schobert R.Dietrich M.Mullen G.Urbina-Gonzalez J.-M. Synthesis 2006, 3902 -
18a
Schobert R.Jagusch C.Melanophy C.Mullen G. Org. Biomol. Chem. 2004, 2: 3524 -
18b
Schobert R.Jagusch C. Tetrahedron 2005, 61: 2301 -
18c
Biersack B.Diestel R.Jagusch C.Rapp G.Sasse F.Schobert R. Chem. Biodiversity 2008, 5: 2423 - 19
Schobert R. Naturwissenschaften 2007, 94: 1 - 20
Murphy PJ.Lee SE. J. Chem. Soc., Perkin Trans. 1 1999, 3049 - 21
Taillefumier C.Chapleur Y. Chem. Rev. 2004, 104: 263 -
22a
Murphy PJ.Dennison ST. Tetrahedron 1993, 49: 6695 -
22b
Cagnolini C.Ferri M.Jones PR.Murphy PJ.Ayres B.Cox B. Tetrahedron 1997, 53: 4815 -
22c
Bittner C.Burgo A.Murphy PJ.Sung CH.Thornhill AJ. Tetrahedron Lett. 1999, 40: 3455 -
22d
Heys L.Murphy PJ.Coles SJ.Gelbrich T.Hursthouse MB. Tetrahedron Lett. 1999, 40: 7151 -
22e
Evans LA.Griffiths KE.Guthmann H.Murphy PJ. Tetrahedron Lett. 2002, 43: 299 -
23a
Brennan J.Murphy PJ. Tetrahedron Lett. 1988, 29: 2063 -
23b
Reddy GV.Rao GV.Iyengar DS. Tetrahedron Lett. 1999, 40: 775 -
24a
Comesse S.Sanselme M.Daïch A. J. Org. Chem. 2008, 73: 5566 -
24b
Oukli N.Comesse S.Chafi N.Oulyadi H.Daïch A. Tetrahedron Lett. 2009, 50: 1459 -
24c
Allous I.Comesse S.Berkeš D.Alkyat A.Daïch A. Tetrahedron Lett. 2009, 50: 4411 -
24d
Saber M.Comesse S.Dalla V.Daïch A.Sanselme M.Netchitaïlo P. Synlett 2010, 2197 -
25a
Kolarovič A.Berkeš D.Baran P.Pova˛anec F. Tetrahedron Lett. 2005, 46: 975 -
25b
Berkeš D.Kolarovič A.Manduch R.Baran P.Pova˛anec F. Tetrahedron: Asymmetry 2005, 16: 1927 -
25c
Berkeš D.Jakubec P.Winklerová D.Pova˛anec F.Daïch A. Org. Biomol. Chem. 2007, 5: 121 -
26a
Ohtsuki K.Matsuo K.Yoshikawa T.Moriya C.Yokotani-Tomita K.Shishido K.Shindo M. Org. Lett. 2008, 10: 1247 -
26b
Matsuo K.Ohtsuki K.Yoshikawa T.Yokotani-Tomita K.Shindo M. Tetrahedron 2010, 66: 8407 -
26c
Matsuo K.Shindo M. Org. Lett. 2010, 12: 5346 - 27 For an example, see:
Schobert R.Siegfried S.Gordon GJ. J. Chem. Soc., Perkin Trans. 1 2001, 2393 - 30
Niwa H.Okamoto O.Miyachi Y.Uosaki Y.Yamada K. J. Org. Chem. 1987, 52: 2941 - 32 For a recent paper stating on this
equilibrium, see:
Storgaard M.Dörwald FZ.Peschke B.Tanner D. J. Org. Chem. 2009, 74: 5032 ; and the references cited therein
References and Notes
General Procedure
for ‘Nonclassical’ Wittig Reaction - Method
B
To a mixture of lactone 9a (2.19
g, 7.78 mmol) in dry toluene (120 mL) were added subsequently the
catalyst 9a˙HCl (0.124 g, 0.39
mmol) and the ylide 10 (4.608 g, 13.23 mmol).
The reaction mixture was refluxed under argon atmosphere for 1 h.
The solvent was then evaporated under reduced pressure, and the
residue was purified by chroma-tography on silica gel column (hexane-EtOAc = 3:1)
to provide the constrained tetramic acid 7a (2.33
g, 7.63 mmol, 93%) as a white solid; mp 111-113 ˚C
(Et2O-heptane), [α]D
²0 205.7
(c 0.32, CHCl3). IR (KBr): νmax = 3105,
2983 (CH), 1668 (C=O), 1644 (C=C), 1185 (COC)
cm-¹. ¹H NMR (300
MHz, CDCl3): δ = 7.26-7.41
(m, 10 H, ArH), 5.55-5.65 (m, 1 H, H-1′, 1 H,
H-2), 5.06 (s, 1 H, H-6), 4.02 (ddd, 1 H, J = 1.0,
6.6, 11.7 Hz, H-3a), 2.66 (ddd, 1 H, J = 4.4,
6.5, 10.9 Hz, H-3A), 1.93 (q, 1 H, J = 22.9
Hz, H-3B), 1.56 (d, 3 H, J = 7.3
Hz, H-2′). ¹³C NMR (75 MHz,
CDCl3): δ = 178.7 (C-6a),
175.6 (C-5), 140.9, 137.7, 129.2, 128.9, 128.8, 127.6, 127.1, 126.2
(ArC), 91.4 (C-6), 90.8 (C-2), 59.6 (C-1′), 48.7 (C-3a),
41.3 (C-3), 18.7 (C-2′). Anal. Calcd for C20H19NO2 (305.14):
C, 78.66; H, 6.27; N, 4.59. Found: C, 80.00; H, 6.51; N, 4.66.
Method C
To a mixture of lactone 9a (0.391 g, 1.39 mmol) in dry toluene
(15 mL) were added subsequently the additive 11 (0.718
g, 1.67 mmol) and Et3N (0.141 g, 1.39 mmol). The reaction
mixture was refluxed under argon atmosphere for 2 h. The white precipitate
deposited was filtered off and washed with toluene. Filtrates were
then evaporated under reduced pressure, and the residue was purified
by chroma-tography on silica gel column (hexane-EtOAc = 3:1)
to provide the constrained tetramic acid 7a (0.401
g, 1.31 mmol, 94%) as a white solid.
General Procedure
for the Reduction of Tetramic Acids 7a-h into Corresponding
Compounds 12a-h
To the bicyclic tetramate 7a (2.33 g, 7.63 mmol) dissolved in EtOAc
(190 mL) was added catalyst (0.47 g, 10 mol% Pd/C),
and the resultant suspension was then vigorously stirred under an
hydrogen atmosphere for 2 h. After the reaction was complete, the
catalyst was filtered off and the product purified by flash chromatography
on silica gel column (hexane-EtOAc = 4:1)
to provide the sat. bicyclic lactam 12a (1.82
g, 77%); mp 52-54 ˚C (Et2O-heptane); [α]D
²0
-69.3
(c 0.23, CHCl3). IR (KBr): νmax = 3064,
2929 (CH), 1661 (C=O), 1056 (COC) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.15-7.32
(m, 10 H, ArH), 5.53 (q, 1 H, J = 7.3 Hz,
H-1′), 4.74 (dd, 1 H, J = 5.2,
10.5 Hz, H-2), 4.50 (td, 1 H, J = 5.5,
7.5 Hz, H-7), 3.86 (dd, 1 H, J = 7.4,
14.2 Hz, H-3a), 2.78 (d, 2 H, J = 5.4
Hz, H-6), 2.51 (ddd, 1 H, J = 5.3, 7.5,
12.6 Hz, H-3A), 1.84 (ddd, 1 H, J = 6.6,
10.6, 12.4 Hz, H-3B), 1.53 (d, 3 H, J = 7.3
Hz, H-2′). ¹³C NMR (75 MHz, CDCl3): δ = 172.6
(C-5), 140.0, 139.4, 128.7, 128.6, 128.0, 127.9, 127.5, 125.8 (ArC),
81.7 (C-2), 74.9 (C-7), 61.2 (C-1′), 50.4 (C-3a), 43.8
(C-6), 38.3 (C-3), 17.7 (C-2′). Anal. Calcd for C20H21NO2 (307.16):
C, 78.15; H, 6.89; N, 4.56. Found: C, 78.23; H, 7.04; N, 4.54.
General Procedure
for the Reduction of Bicycles 7a-h into Corresponding Tetramic
Acids 13a-h
To the bicyclic tetramate 7a (1.013 g, 3.3 mmol) dissolved in MeOH
(50 mL) was added catalyst (0.203 g, 10 mol% Pd/C),
and the resultant suspension was then vigorously stirred under an
hydrogen atmosphere for 4 h. After the reaction was complete, the
catalyst was filtered off and the product purified by flash chromatography
on silica gel column (hexane-EtOAc = 4:1)
to provide the 5-arylalkyltetramic acid 13a (0.648
g, 64%) as colorless oil; [α]D
²0 11
(c 0.42, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 7.01-7.35
(m, 10 H, ArH), 5.70 (q, 1 H, J = 7.3
Hz, H-1′′), 3.58 (dd, 1 H, J = 2.9,
6.7 Hz, H-5), 3.05 (s, 1 H, H-3), 2.68 (ddd, 2 H, J = 4.1,
11.4, 13.7 Hz, H-2′A), 2.38 (ddd, 1 H, J = 6.6,
11.3, 13.4 Hz, H-2′B), 2.13 (dddd, 2 H, J = 3.1,
6.6, 11.2, 14.3 Hz, H-1′A), 1.80-1.92 (m, 1 H,
H-1′B), 1.73 (d, 3 H, J = 7.3
Hz, H-2′′). ¹³C NMR
(75 MHz, CDCl3): δ = 207.0
(C-4), 169.2 (C-2), 140.0, 138.0, 128.9, 128.6, 128.3, 128.2, 127.6,
126.4 (ArC); 65.6 (C-5), 50.9 (C-1′′), 41.8 (C-3),
33.3 (C-2′), 29.5 (C-1′), 18.4 (C-2′′).
General Procedure
for the Debenzylation Process
A solution of 12a (1.591 g, 5.16 mmol) in dry THF (30
mL) was added to liquid NH3 (40 mL) at -78 ˚C.
Small pieces of Na (15-20 equiv) were added until the reaction
mixture remained blue, and the mixture was stirred at -78 ˚C.
After 30 min of the reaction, the solution was then quenched with aq
NH4Cl. The residual ammonia was evaporated, and the mixture
was extracted three times with Et2O. The combined organic
layers were dried over Na2SO4, filtered, and evaporated
in vacuo. The residue was purified by column chromatography on silica
gel column (MeOH-EtOAc = 1:10) to provide
ultimately (4S,5S)-4-hydroxy-5-phenyl-ethylpyrrolidin-2-one
(8a) in yield 80% (0.85 g); mp
104-106 ˚C (Et2O); [α]D
²0 -18.4
(c 0.114, MeOH). ¹H
NMR (300 MHz, CDCl3): δ = 7.14-7.30
(m, 5 H, H-Ar), 4.25 (t,
1 H, J = 4.3
Hz, H-4), 3.52 (dd, 1 H, J = 7.0,
11.7 Hz, H-5), 2.67 (t, 2 H, J = 7.2
Hz, H-2′), 2.53 (dd, 1 H, J = 5.8,
17.2 Hz, H-3A), 2.28 (dd, 1 H, J = 1.4,
17.2 Hz, H-3B), 1.91-2.05 (m, 1 H, H-1′A), 1.80-1.90
(m, 1 H, H-1′B). ¹³C NMR (75 MHz,
CDCl3): δ = 176.8
(C-2), 141.1, 128.5, 128.3, 126.1 (ArC), 68.6 (C-4), 59.2 (C-5),
41.0 (C-3), 32.3 (C-2′), 30.4 (C-1′).
Synthesis of Products
14
By using same procedure such as from the substrate 12g as starting material, the expected
(2R,3aS,7S)-2-tert-butyl-hexahydrofuro[3,2b]-pyrrol-5-one (14g)
was isolated in 73% yield; mp 145-147 ˚C
(Et2O); [α]D
²0 13.5
(c 0.1, MeOH). ¹H
NMR (300 MHz, CDCl3): δ = 4.74
(t, 1 H, J = 5.6
Hz, H-7), 4.31 (t, 1 H, J = 5.5
Hz, H-3a), 3.78 (dd, 1 H, J = 4.8,
10.9 Hz, H-2), 2.40-2.68 (m, 2 H, H-6), 1.86 (dd, 1 H, J = 4.8, 13.2
Hz, H-3A), 1.40-1.49 (m, 1 H, H-3B), 0.88 (s, 9 H, H-2′′). ¹³C
NMR (75 MHz, CDCl3): δ = 177.7
(C-5), 85.5 (C-2), 59.6 (C-7), 51.1 (C-3a), 38.9 (C-6), 34.1 (C-3), 32.9
(C-1′′), 25.9 (C-2′′).