Subscribe to RSS
DOI: 10.1055/s-0030-1260934
Palladium-Mediated Intramolecular Buchwald-Hartwig α-Arylation of β-Amino Esters: Synthesis of Functionalized Tetrahydroisoquinolines
Publication History
Publication Date:
05 July 2011 (online)
Abstract
A concise and efficient three-step strategy for the synthesis of functionalized 1,2,3,4-tetrahydroisoquinolines based on an intramolecular Buchwald-Hartwig α-arylation of β-amino esters is described. The synthesis presented is operationally simple and is amenable for the synthesis of a number of analogues.
Key words
palladium catalysis - α-arylation - tetrahydroisoquinolines - natural products
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Beller M.Riermeier TH.Stark G. In Transition Metals for Organic Synthesis Vol. 1:Beller M.Bolm C. Wiley-VCH; Weinheim: 1998. p.208 -
1b
Bräse S.de Meijere A. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. Chap. 3. -
1c
Link JT.Overman LE. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. Chap. 6. -
1d
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
1e
Poli G.Giambastiani G.Heumann A. Tetrahedron 2000, 56: 5959 -
1f
Link JT. Org. React. 2002, 60: 157 -
2a
Farina V.Krishnamurthy V.Scott W. J. Org. React. 1997, 50: 1 -
2b
Duncton MAJ.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1999, 1235 -
2c
Gonthier E.Breinbauer R. Mol. Diversity 2005, 9: 51 -
2d
Echavarren AM. Angew. Chem. Int. Ed. 2005, 44: 3962 ; Angew. Chem. 2005, 117, 4028 - For a selection of reviews, see:
-
3a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
3b
Chemler SR.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4544 ; Angew. Chem. 2001, 113, 4676 -
3c
Darses S.Genet J.-P. Eur. J. Org. Chem. 2003, 4313 -
3d
Bellina F.Carpita A.Rossi R. Synthesis 2004, 2419 -
3e
Suzuki A. Chem. Commun. 2005, 4759 -
3f
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442; Angew. Chem. 2005, 117, 4516 -
3g
Kantchev EAB.O’Brien CJ.Organ MG. Aldrichimica Acta 2006, 39: 97 -
4a
Casser L. J. Organomet. Chem. 1975, 93: 253 -
4b
Dieck HA.Heck FR. J. Organomet. Chem. 1975, 93: 259 -
4c
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 31: 4467 -
4d
Sonogashira K. In Comprehensive Organic Synthesis Vol. 32:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.521 -
4e
Beller M.Zapf A. Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1:Negishi E. Wiley-Interscience; New York: 2002. p.1209 -
4f
Negishi IE.Anastasia L. Chem. Rev. 2003, 103: 1979 -
5a
Kosugi M.Kameyama M.Migita T. Chem. Lett. 1983, 927 -
5b
Guram AS.Buchwald SL. J. Am. Chem. Soc. 1994, 116: 7901 -
5c
Guram AS.Runnels RA.Buchwald SL. Angew. Chem., Int. Ed. Engl. 1995, 34: 1348 -
5d
Yang BH.Buchwald SL. J. Oganomet. Chem. 1999, 576: 125 -
5e
Shaughnessy KH.Hamann BC.Hartwig JF. J. Org. Chem. 1998, 63: 6546 -
5f
Khartulyari AS.Maier ME. Eur. J. Org. Chem. 2007, 317 -
5g
Satyanarayana G.Maier ME. Tetrahedron 2008, 64: 356 - For some reviews, see:
-
6a
Kakiuchi F.Chatani N. Adv. Synth. Catal. 2003, 345: 1077 -
6b
Dunina VV.Gorunova ON. Russ. Chem. Rev. 2004, 73: 309 -
6c
Godula K.Sames D. Science 2006, 312: 67 - For some recent illustrative examples, see:
-
7a
Ohno H.Yamamoto M.Iuchi M.Tanaka T. Angew. Chem. Int. Ed. 2005, 44: 5103 ; Angew. Chem. 2005, 117, 5233 -
7b
Bertrand MB.Wolfe JP. Org. Lett. 2007, 9: 3073 -
7c
Rudolph A.Rackelmann N.Lautens M. Angew. Chem. Int. Ed. 2007, 46: 1485 ; Angew. Chem. 2007, 119, 1507 -
8a
Solé D.Serrano O. Angew. Chem. Int. Ed. 2007, 46: 7270 -
8b
Solé D.Serrano O. J. Org. Chem. 2008, 73: 9372 -
8c
Solé D.Serrano O. J. Org. Chem. 2010, 75: 6267 -
9a
Hartwig JF. Angew. Chem. Int. Ed. 1998, 37: 2046 -
9b
Honda T.Namiki H.Satoh F. Org. Lett. 2001, 3: 631 -
9c
Gaertzen O.Buchwald SL. J. Org. Chem. 2002, 67: 465 - 10
Bentley KW. Nat. Prod. Rep. 2006, 23: 444 - 11
Scott JD.Williams RM. Chem. Rev. 2002, 102: 1669 - 12
Stermitz FR.Lorenz P.Tawara JN.Zenewicz LA.Lewis K. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 1433 - 13
Cortijo J.Villagrasa V.Pons R.Berto L.Marti-Cabrera M.Martinez-Losa M.Domenech T.Beleta J.Morcillo EJ. Br. J. Pharmacol. 1999, 127: 1641 - 14
Kashiwada Y.Aoshima A.Ikeshiro Y.Chen Y.-P.Furukawa H.Itoigawa M.Fujioka T.Mihashi K.Cosentino LM.Morris-Natschke SL.Lee K.-H. Bioorg. Med. Chem. 2005, 13: 443 - 15
Goodman AJ.Le Bourdonnec B.Dolle RE. ChemMedChem. 2007, 2: 1552 - 16
Brossi A.Grethe G.Teitel S.Wildman WC.Bailey DT. J. Org. Chem. 1970, 35: 1100 - 17
Kobayashi S.Tokumoto T.Taira Z. J. Chem. Soc., Chem. Commun. 1984, 1043 - 18 Canadine synthesis:
Matulenko MA.Meyers AI. J. Org. Chem. 1996, 61: 573 - 19 Synthesis of stepharinine and pronuciferine:
Honda T.Shigehisa H. Org. Lett. 2006, 8: 657 - 20 Erythrocarine isolation:
Chawla AS.Redha FMJ.Jackson AH. Phytochemistry 1985, 24: 1821 - 21 6,6a-Dihydrodemethoxygaudiscine isolation:
- 22
Costa EV.Marques FA.Pinheiro MLB.Vaz NP.Duarte MCT.Delarmelina C.Braga RM.Sales Maia BHLN. J. Nat. Prod. 2009, 72: 1516 - 23
Chandrasekhar S.Reddy NR.Rao YS. Tetrahedron Lett. 2006, 62: 12098 -
24a
Escalante J.Carrillo-Morales M.Linzaga I. Molecules 2008, 13: 340 -
24b
Roy O.Faure S.Thery V.Didierjean C.Taillefumier C. Org. Lett. 2008, 10: 921
References and Notes
General Procedure
for Buchwald-Hartwig Cyclization: The following Procedure
for 4a is Representative
In an oven-dried Schlenk
tube under nitrogen atmosphere were taken Pd(OAc)2 (10
mol%), Ph3P (20 mol%), and Cs2CO3 (2
mmol) in toluene (ca. 1.5 mL), and the mixture was stirred for 5
min. To this mixture was added ester 3a (1 mmol)
in toluene (ca. 3.0 mL), and the reaction mixture was stirred for
24 h at 80 ˚C. Progress of the reaction was monitored by
TLC, and, after the reaction is complete, it was quenched by addition
of aq NH4Cl and extracted with CH2Cl2 (3 × 20
mL). The organic layer was dried over Na2SO4,
filtered, and concentrated under reduced pressure. Purification
of the residue by column chromatography on silica gel using PE-EtOAc
as eluent furnished the product 4a in 82% yield.
Representative Analytical Data
Compound 4a: IR: 3027, 2982, 1732, 1684, 1452, 1242, 1166,
1034, 741 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.36-7.10
(m, 8 H, ArH), 7.06-6.98 (m, 1 H, ArH), 4.20-4.10
(m, 2 H, OCH
2CH3),
3.85 (dd, 1 H, J = 5.2,
5.2 Hz,
4′-H), 3.80 [d, 1 H, J = 14.9 Hz,
NCH2 (a,b)], 3.74 [d, 1 H, J = 13.2 Hz,
NCH2 (a′,b′)], 3.65 [d,
1 H, J = 13.2
Hz, NCH2 (a′,b′)], 3.59 [d,
1 H, J = 14.9
Hz, NCH2(a,b)], 3.18 (dd, J = 11.5,
5.6 Hz, 1 H, NCH
2aCHCOOEt),
2.85 (dd, J = 11.5, 4.8
Hz, 1 H, N-CH
2bCHCOOEt), 1.23
(t, J = 7.2
Hz, 3 H, OCH2CH
3)
ppm. ¹³C NMR (50 MHz, CDCl3): δ = 173.25
(s, OC=O), 138.13 (s, ArC), 135.19 (s, ArC), 131.58 (s,
ArC), 129.31 (d, ArC), 129.05 (d, 2 C, ArC), 128.32 (d, 2 C, ArC), 127.25
(d, ArC),126.92 (d, ArC), 126.75 (d, ArC), 126.31 (d, ArC), 62.31
(t, NCH2), 60.95 (t, OCH2CH3),
56.11 (t, NCH2), 52.95 (t, C-3′), 45.46 (d,
C-4′), 14.22 (q, OCH2
CH3) ppm.
Compound 4b: 79% yield. IR: 2931, 2828,
1729, 1610, 1514, 1455, 1252, 1134, 1031, 741 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.41-7.24
(m, 5 H, ArH), 6.74 (s, 1 H, ArH), 6.52 (s, 1 H, ArH), 4.26-4.06
(m, 2 H, OCH
2CH3), 3.85
(s, 3 H, ArOCH3), 3.83 (s, 3 H, ArOCH3), 3.78
(dd, 1 H, J = 5.0,
5.0 Hz, 4′-H), 3.74 [d, 1 H, J = 13.1
Hz, NCH2(a′,b′)], 3.67 [d,
1 H, J = 14.5
Hz, NCH2(a,b)], 3.65 [d, 1 H, J = 13.1 Hz,
NCH2(a′,b′)], 3.52 [d,
1 H, J = 14.5
Hz, NCH2(a,b)], 3.17 (dd, 1 H, J = 11.4,
5.5 Hz, NCH
2aCHCOOEt), 2.85
(dd, 1 H, J = 11.4,
4.8 Hz, NCH
2bCHCOOEt), 1.22
(t, 3 H, J = 7.1
Hz, OCH2CH
3) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 173.3
(s, OC=O), 148.1 (s, ArC), 147.48 (s, ArC), 138.10 (s,
ArC), 129.05 (d, 2 C, ArC), 128.29 (d, 2 C, ArC), 127.36 (s, ArC),
127.22 (d, ArC), 123.27 (s, ArC), 111.82 (d, ArC), 109.22 (d, ArC), 62.23
(t, NCH2), 60.87 (t, OCH2CH3),
55.92 (q, ArOCH3), 55.83 (q, ArOCH3), 55.66
(t, NCH2), 52.98 (t, C-3′), 44.91 (d, C-4′),
14.24 (q, OCH2
CH3)
ppm. HRMS (ESI+): m/z calcd
for [C21H25NNaO4]+ = [M + Na]+:
378.1676; found: 378.1685.
Compound 4c:
85% based on the recovery of 19% of starting material.
IR: 2938, 2834, 1732, 1598, 1458, 1238, 1118, 741 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.42-7.20
(m, 5 H, ArH), 6.35 (s, 1 H, ArH), 4.25-4.00 (m, 2 H, OCH
2CH3), 3.87 (s,
3 H, ArOCH3), 3.83 (s, 3 H, ArOCH3), 3.81
(s, 3 H, ArOCH3), 3.80-3.67 (m, 1 H, 4′-H),
3.74 [d, 1 H, J = 14.8 Hz,
NCH2(a,b)], 3.72 [d, 1 H, J = 13.2 Hz,
NCH2(a′,b′)], 3.70 [d,
1 H, J = 14.8
Hz, NCH2(a,b)], 3.60 [d, 1 H, J = 13.2 Hz,
NCH2(a′,b′)], 3.08 (dd, 1
H, J = 11.5,
5.1 Hz, NCH
2aCHCOOEt), 2.81
(dd, 1 H, J = 11.5,
5.1 Hz, NCH
2bCHCOOEt), 1.20
(t, 3 H, J = 7.2
Hz, OCH2CH
3) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 173.86
(s, OC=O), 152.79 (s, ArC), 151.54 (s, ArC), 140.05 (s,
ArC), 138.05 (s, ArC), 130.75 (s, ArC), 128. 94 (d, ArC), 128.59
(s, ArC), 128.30 (d, ArC), 127.22 (d, ArC), 118.36 (s, ArC), 104.82 (d,
ArC), 61.98 (t, NCH2), 60.71 (q, ArOCH3),
60.69 (t, NCH2), 60.33 (q, ArOCH3), 55.90
(t, 2 C, OCH2CH3 and OCH3),
53.48 (t, NCH2CHCOOEt), 41.27
(d, NCH2
CHCOOEt), 14.23 (q,
OCH2
CH3) ppm. HRMS (ESI+): m/z calcd for [C22H27NNaO4]+ = [M + Na]+: 408.1781;
found: 408.1787.