Subscribe to RSS
DOI: 10.1055/s-0030-1260986
Organocatalytic Asymmetric Hetero-Diels-Alder Reaction of Oxindoles under High Pressure [¹]
Publication History
Publication Date:
10 August 2011 (online)
Abstract
A general and efficient protocol for the high-pressure-promoted asymmetric hetero-Diels-Alder reactions of oxindoles has been developed. These reactions can be realized by using chiral thiourea-derived organocatalysts, and the desired adducts are obtained in good to high yields with good to moderate enantioselectivity.
Key words
asymmetric hetero-Diels-Alder reaction - oxindoles - chiral thiourea catalyst - high pressure
- 1 High-Pressure Organic Chemistry.
Part 37. For Part 36, see:
Mimoto A.Nakano K.Ichikawa Y.Kotsuki H. Heterocycles 2010, 80: 799 - For reviews, see:
-
2a
Lin H.Danishefsky SJ. Angew. Chem. Int. Ed. 2003, 42: 36 -
2b
Dounay AB.Overman LE. Chem. Rev. 2003, 103: 2945 -
2c
Marti C.Carreira EM. Eur. J. Org. Chem. 2003, 2209 -
2d
Steven A.Overman LE. Angew. Chem. Int. Ed. 2007, 46: 5488 -
2e
Galliford CV.Scheidt K. Angew. Chem. Int. Ed. 2007, 46: 8748 -
2f
Trost BM.Brennan MK. Synthesis 2009, 3003 -
2g
Zhou F.Liu Y.-L.Zhou J. Adv. Synth. Catal. 2010, 352: 1381 -
3a
Tokunaga T.Hume WE.Umezome T.Okazaki K.Ueki Y.Kumagai K.Hourai S.Nagamine J.Seki H.Taiji M.Noguchi H.Nagata R. J. Med. Chem. 2001, 44: 4641 -
3b
Hewawasam P.Erway M.Moon SL.Knipe J.Weiner H.Boissard CG.Post-Munson DJ.Gao Q.Huang S.Gribkoff VK.Meanwell NA. J. Med. Chem. 2002, 45: 1487 -
3c
Tokunaga T.Hume WE.Nagamine J.Kawamura T.Taiji M.Nagata R. Bioorg. Med. Chem. Lett. 2005, 15: 1789 -
3d For a review, see:
Peddibhotla S. Curr. Bioact. Compd. 2009, 5: 20 - For selected recent examples, see:
-
4a
Lai H.Huang Z.Wu Q.Qin Y. J. Org. Chem. 2009, 74: 283 -
4b
Angelici G.Correa RJ.Garden SJ.Tomasini C. Tetrahedron Lett. 2009, 50: 814 -
4c
Qiao X.-C.Zhu S.-F.Zhou Q.-L. Tetrahedron: Asymmetry 2009, 20: 1254 -
4d
Xue F.Zhang S.Liu L.Duan W.Wang W. Chem. Asian J. 2009, 4: 1664 -
4e
Itoh T.Ishikawa H.Hayashi Y. Org. Lett. 2009, 11: 3854 -
4f
Hara N.Nakamura S.Shibata N.Toru T. Chem. Eur. J. 2009, 15: 6790 ; and ref cited therein -
4g
Itoh J.Han SB.Krische MJ. Angew. Chem. Int. Ed. 2009, 48: 6313 -
4h
Tomita D.Yamatsugu K.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2009, 131: 6946 -
4i
Chen W.-B.Du X.-L.Cun L.-F.Zhang X.-M.Yuan W.-C. Tetrahedron 2010, 66: 1441 -
4j
Hanhan NV.Sahin AH.Chang TW.Fettinger JC.Franz AK. Angew. Chem. Int. Ed. 2010, 49: 744 -
4k
Deng J.Zhang S.Ding P.Jiang H.Wang W.Li J. Adv. Synth. Catal. 2010, 352: 833 -
4l
Raj M.Veerasamy N.Singh VK. Tetrahedron Lett. 2010, 51: 2157 -
4m
Hara N.Nakamura S.Shibata N.Toru T. Adv. Synth. Catal. 2010, 352: 1621 -
4n
Vyas DJ.Fröhlich R.Oestreich M. J. Org. Chem. 2010, 75: 6720 -
4o
Chauhan P.Chimni SS. Chem. Eur. J. 2010, 16: 7709 -
4p
Guo Q.Bhanushali M.Zhao C.-G. Angew. Chem. Int. Ed. 2010, 49: 9460 -
4q
Shintani R.Takatsu K.Hayashi T. Chem. Commun. 2010, 46: 6822 -
4r
Liu Y.-L.Wang B.-L.Cao J.-J.Chen L.Zhang Y.-X.Wang C.Zhou J. J. Am. Chem. Soc. 2010, 132: 15176 -
4s
Zhong F.Chen G.-Y.Lu Y. Org. Lett. 2011, 13: 82 -
4t
Wang C.-C.Wu X.-Y. Tetrahedron 2011, 67: 2974 -
4u
Liu Z.Gu P.Shi M.McDowell P.Li G. Org. Lett. 2011, 13: 2314 - For selected recent examples, see:
-
5a
see Ref. 3b.
-
5b
Ishimaru T.Shibata N.Nagai J.Nakamura S.Toru T.Kanemasa S. J. Am. Chem. Soc. 2006, 128: 16488 -
5c
Sano D.Nagata K.Itoh T. Org. Lett. 2008, 10: 1593 -
5d
Bui T.Candeias NR.Barbas CF. J. Am. Chem. Soc. 2010, 132: 5574 - For a related work on the synthesis of 4-type compounds, see:
-
6a
Castaldi MP.Troast DM.Porco JA. Org. Lett. 2009, 11: 3362 -
6b
Hari Babu T.Karthik K.Perumal PT. Synlett 2010, 1128 -
6c
Ueno S.Ohtsubo M.Kuwano R. Org. Lett. 2010, 12: 4332 - Recently, a new strategy using homologous cycloaddition was disclosed:
-
6d
Hazra A.Paira P.Sahu KB.Naskar S.Saha P.Paira R.Mondal S.Maity A.Luger P.Weber M.Mondal NB.Banerjee S. Tetrahedron Lett. 2010, 51: 1585 -
6e
Wang X.-N.Zhang Y.-Y.Ye S. Adv. Synth. Catal. 2010, 352: 1892 - 7
Mori K.Maddaluno J.Nakano K.Ichikawa Y.Kotsuki H. Synlett 2009, 2346 - 12
Lattanzi A. Synlett 2007, 2106 - 13 The observed low diastereoselectivities
can be ascribed to the weak secondary π-orbital interactions;
however, it is likewise difficult to rule out stepwise cyclization
pathways. See:
Danishefsky SJ.Larson E.Askin D.Kato N.
J. Am. Chem. Soc. 1985, 107: 1246
References and Notes
Most of these catalysts are known.
The new catalysts, 1a, 1b, 1d, 1f, and 1g, were simply prepared by condensation
of 3,5-bis(trifluoromethyl)phenylisothiocyanate with chiral amine precursors. 1a: mp 130.5-133 ˚C (hexane-CH2Cl2), [α]D
²6
-16.4
(c = 1.0, CHCl3); 1b: mp 48-50 ˚C (hexane-CH2Cl2), [α]D
²0 -93.7
(c = 1.0, CHCl3); 1d: mp 129.0-132.0 ˚C (hexane-CH2Cl2), [α]D
²¹ +48.8
(c = 0.90, CHCl3); 1f: mp 151-153 ˚C (hexane-CH2Cl2), [α]D
²6 +3.96
(c = 0.15, CHCl3); 1g: mp 149.5-151 ˚C (hexane-CH2Cl2), [α]D
²6 +10.3
(c = 0.16, CHCl3).
General Procedure: A mixture of diene 2 (1.0 mmol) and ketone 3 (0.25 mmol) in the presence of 1a (0.1 mmol) in toluene or CH2Cl2 (ca. 2.5 mL) was placed in a Teflon reaction vessel, and the mixture was allowed to react at 1.0 GPa and r.t. for 12 h. After the pressure was released, the mixture was concentrated and purified by silica gel column chromatography (elution with hexane-Et2O) to afford the pure adduct 4.
10At lower pressures, the yield and enantioselectivity were both decreased for the reaction of 2a with 3a using 30 mol% of 1e in CH2Cl2: at 0.6 GPa, r.t., 4.5 d, 31% yield, exo-4a (49% ee, R), endo-4a (62% ee, R).
11Not optimized.
14In general, the exo-adducts
were less polar than the endo-adducts.
TLC data (hexane-EtOAc, 4:1); exo-4a: R
f 0.42
and endo-4a: R
f
0.34.
Compound exo-4a: colorless
oil. FTIR (neat): 1777, 1733, 1606, 1478, 1467 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.65 (s,
9 H), 2.26 (dd, J = 17.6, 6.0
Hz, 1 H), 2.71 (ddd, J = 17.6,
6.0, 2.0 Hz, 1 H), 3.25 (s, 3 H), 5.34 (d, J = 2.0
Hz, 1 H), 6.00-6.04 (m, 1 H), 6.15-6.20 (m, 1
H), 7.12 (t, J = 8.0 Hz, 1 H),
7.34 (m, 1 H), 7.70 (d, J = 7.6
Hz, 1 H), 7.86 (d,
J = 8.0
Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 28.1
(3 ×), 31.2, 55.2, 73.8, 84.7, 95.7, 114.8, 124.3, 125.2,
125.9, 126.1, 129.4, 129.7, 139.0, 149.1, 173.9.
Compound endo-4a: colorless
oil. FTIR (neat): 1780, 1731, 1606, 1478, 1467 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.63 (s,
9 H), 2.32-2.37 (m, 1 H), 2.68-2.73 (m, 1 H),
3.43 (s, 3 H), 5.25 (s, 1 H), 5.98-6.02 (m, 1 H), 6.19-6.23
(m, 1 H), 7.17 (t, J = 8.0 Hz,
1 H), 7.39 (t, J = 8.0 Hz, 1
H), 7.43 (d, J = 8.0 Hz, 1 H),
7.91 (d, J = 8.0 Hz, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 28.1 (3 ×),
30.0, 55.2, 74.1, 84.5, 96.0, 115.3, 123.9, 124.6, 126.2, 126.4,
128.9, 130.2, 139.4, 149.4, 172.5.
Chiral HPLC analysis results: Chiralpak AD-H column, 0.46 × 25 cm, hexane-2-propanol (80:20), flow rate: 1.0 cm³/min, λ = 254 nm; t R (S-isomer) = 7.8 min; t R (R-isomer) = 9.5 min. See also ref. 4i.