RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260986
Organocatalytic Asymmetric Hetero-Diels-Alder Reaction of Oxindoles under High Pressure [¹]
Publikationsverlauf
Publikationsdatum:
10. August 2011 (online)

Abstract
A general and efficient protocol for the high-pressure-promoted asymmetric hetero-Diels-Alder reactions of oxindoles has been developed. These reactions can be realized by using chiral thiourea-derived organocatalysts, and the desired adducts are obtained in good to high yields with good to moderate enantioselectivity.
Key words
asymmetric hetero-Diels-Alder reaction - oxindoles - chiral thiourea catalyst - high pressure
- 1 High-Pressure Organic Chemistry.
Part 37. For Part 36, see:
Mimoto A.Nakano K.Ichikawa Y.Kotsuki H. Heterocycles 2010, 80: 799 - For reviews, see:
- 2a
Lin H.Danishefsky SJ. Angew. Chem. Int. Ed. 2003, 42: 36Reference Ris Wihthout Link - 2b
Dounay AB.Overman LE. Chem. Rev. 2003, 103: 2945Reference Ris Wihthout Link - 2c
Marti C.Carreira EM. Eur. J. Org. Chem. 2003, 2209Reference Ris Wihthout Link - 2d
Steven A.Overman LE. Angew. Chem. Int. Ed. 2007, 46: 5488Reference Ris Wihthout Link - 2e
Galliford CV.Scheidt K. Angew. Chem. Int. Ed. 2007, 46: 8748Reference Ris Wihthout Link - 2f
Trost BM.Brennan MK. Synthesis 2009, 3003Reference Ris Wihthout Link - 2g
Zhou F.Liu Y.-L.Zhou J. Adv. Synth. Catal. 2010, 352: 1381Reference Ris Wihthout Link - 3a
Tokunaga T.Hume WE.Umezome T.Okazaki K.Ueki Y.Kumagai K.Hourai S.Nagamine J.Seki H.Taiji M.Noguchi H.Nagata R. J. Med. Chem. 2001, 44: 4641Reference Ris Wihthout Link - 3b
Hewawasam P.Erway M.Moon SL.Knipe J.Weiner H.Boissard CG.Post-Munson DJ.Gao Q.Huang S.Gribkoff VK.Meanwell NA. J. Med. Chem. 2002, 45: 1487Reference Ris Wihthout Link - 3c
Tokunaga T.Hume WE.Nagamine J.Kawamura T.Taiji M.Nagata R. Bioorg. Med. Chem. Lett. 2005, 15: 1789Reference Ris Wihthout Link - 3d For a review, see:
Peddibhotla S. Curr. Bioact. Compd. 2009, 5: 20Reference Ris Wihthout Link - For selected recent examples, see:
- 4a
Lai H.Huang Z.Wu Q.Qin Y. J. Org. Chem. 2009, 74: 283Reference Ris Wihthout Link - 4b
Angelici G.Correa RJ.Garden SJ.Tomasini C. Tetrahedron Lett. 2009, 50: 814Reference Ris Wihthout Link - 4c
Qiao X.-C.Zhu S.-F.Zhou Q.-L. Tetrahedron: Asymmetry 2009, 20: 1254Reference Ris Wihthout Link - 4d
Xue F.Zhang S.Liu L.Duan W.Wang W. Chem. Asian J. 2009, 4: 1664Reference Ris Wihthout Link - 4e
Itoh T.Ishikawa H.Hayashi Y. Org. Lett. 2009, 11: 3854Reference Ris Wihthout Link - 4f
Hara N.Nakamura S.Shibata N.Toru T. Chem. Eur. J. 2009, 15: 6790 ; and ref cited thereinReference Ris Wihthout Link - 4g
Itoh J.Han SB.Krische MJ. Angew. Chem. Int. Ed. 2009, 48: 6313Reference Ris Wihthout Link - 4h
Tomita D.Yamatsugu K.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2009, 131: 6946Reference Ris Wihthout Link - 4i
Chen W.-B.Du X.-L.Cun L.-F.Zhang X.-M.Yuan W.-C. Tetrahedron 2010, 66: 1441Reference Ris Wihthout Link - 4j
Hanhan NV.Sahin AH.Chang TW.Fettinger JC.Franz AK. Angew. Chem. Int. Ed. 2010, 49: 744Reference Ris Wihthout Link - 4k
Deng J.Zhang S.Ding P.Jiang H.Wang W.Li J. Adv. Synth. Catal. 2010, 352: 833Reference Ris Wihthout Link - 4l
Raj M.Veerasamy N.Singh VK. Tetrahedron Lett. 2010, 51: 2157Reference Ris Wihthout Link - 4m
Hara N.Nakamura S.Shibata N.Toru T. Adv. Synth. Catal. 2010, 352: 1621Reference Ris Wihthout Link - 4n
Vyas DJ.Fröhlich R.Oestreich M. J. Org. Chem. 2010, 75: 6720Reference Ris Wihthout Link - 4o
Chauhan P.Chimni SS. Chem. Eur. J. 2010, 16: 7709Reference Ris Wihthout Link - 4p
Guo Q.Bhanushali M.Zhao C.-G. Angew. Chem. Int. Ed. 2010, 49: 9460Reference Ris Wihthout Link - 4q
Shintani R.Takatsu K.Hayashi T. Chem. Commun. 2010, 46: 6822Reference Ris Wihthout Link - 4r
Liu Y.-L.Wang B.-L.Cao J.-J.Chen L.Zhang Y.-X.Wang C.Zhou J. J. Am. Chem. Soc. 2010, 132: 15176Reference Ris Wihthout Link - 4s
Zhong F.Chen G.-Y.Lu Y. Org. Lett. 2011, 13: 82Reference Ris Wihthout Link - 4t
Wang C.-C.Wu X.-Y. Tetrahedron 2011, 67: 2974Reference Ris Wihthout Link - 4u
Liu Z.Gu P.Shi M.McDowell P.Li G. Org. Lett. 2011, 13: 2314Reference Ris Wihthout Link - For selected recent examples, see:
- 5a
see Ref. 3b.
Reference Ris Wihthout Link - 5b
Ishimaru T.Shibata N.Nagai J.Nakamura S.Toru T.Kanemasa S. J. Am. Chem. Soc. 2006, 128: 16488Reference Ris Wihthout Link - 5c
Sano D.Nagata K.Itoh T. Org. Lett. 2008, 10: 1593Reference Ris Wihthout Link - 5d
Bui T.Candeias NR.Barbas CF. J. Am. Chem. Soc. 2010, 132: 5574Reference Ris Wihthout Link - For a related work on the synthesis of 4-type compounds, see:
- 6a
Castaldi MP.Troast DM.Porco JA. Org. Lett. 2009, 11: 3362Reference Ris Wihthout Link - 6b
Hari Babu T.Karthik K.Perumal PT. Synlett 2010, 1128Reference Ris Wihthout Link - 6c
Ueno S.Ohtsubo M.Kuwano R. Org. Lett. 2010, 12: 4332Reference Ris Wihthout Link - Recently, a new strategy using homologous cycloaddition was disclosed:
- 6d
Hazra A.Paira P.Sahu KB.Naskar S.Saha P.Paira R.Mondal S.Maity A.Luger P.Weber M.Mondal NB.Banerjee S. Tetrahedron Lett. 2010, 51: 1585Reference Ris Wihthout Link - 6e
Wang X.-N.Zhang Y.-Y.Ye S. Adv. Synth. Catal. 2010, 352: 1892Reference Ris Wihthout Link - 7
Mori K.Maddaluno J.Nakano K.Ichikawa Y.Kotsuki H. Synlett 2009, 2346 - 12
Lattanzi A. Synlett 2007, 2106 - 13 The observed low diastereoselectivities
can be ascribed to the weak secondary π-orbital interactions;
however, it is likewise difficult to rule out stepwise cyclization
pathways. See:
Danishefsky SJ.Larson E.Askin D.Kato N.
J. Am. Chem. Soc. 1985, 107: 1246Reference Ris Wihthout Link
References and Notes
Most of these catalysts are known.
The new catalysts, 1a, 1b, 1d, 1f, and 1g, were simply prepared by condensation
of 3,5-bis(trifluoromethyl)phenylisothiocyanate with chiral amine precursors. 1a: mp 130.5-133 ˚C (hexane-CH2Cl2), [α]D
²6
-16.4
(c = 1.0, CHCl3); 1b: mp 48-50 ˚C (hexane-CH2Cl2), [α]D
²0 -93.7
(c = 1.0, CHCl3); 1d: mp 129.0-132.0 ˚C (hexane-CH2Cl2), [α]D
²¹ +48.8
(c = 0.90, CHCl3); 1f: mp 151-153 ˚C (hexane-CH2Cl2), [α]D
²6 +3.96
(c = 0.15, CHCl3); 1g: mp 149.5-151 ˚C (hexane-CH2Cl2), [α]D
²6 +10.3
(c = 0.16, CHCl3).
General Procedure: A mixture of diene 2 (1.0 mmol) and ketone 3 (0.25 mmol) in the presence of 1a (0.1 mmol) in toluene or CH2Cl2 (ca. 2.5 mL) was placed in a Teflon reaction vessel, and the mixture was allowed to react at 1.0 GPa and r.t. for 12 h. After the pressure was released, the mixture was concentrated and purified by silica gel column chromatography (elution with hexane-Et2O) to afford the pure adduct 4.
10At lower pressures, the yield and enantioselectivity were both decreased for the reaction of 2a with 3a using 30 mol% of 1e in CH2Cl2: at 0.6 GPa, r.t., 4.5 d, 31% yield, exo-4a (49% ee, R), endo-4a (62% ee, R).
11Not optimized.
14In general, the exo-adducts
were less polar than the endo-adducts.
TLC data (hexane-EtOAc, 4:1); exo-4a: R
f 0.42
and endo-4a: R
f
0.34.
Compound exo-4a: colorless
oil. FTIR (neat): 1777, 1733, 1606, 1478, 1467 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.65 (s,
9 H), 2.26 (dd, J = 17.6, 6.0
Hz, 1 H), 2.71 (ddd, J = 17.6,
6.0, 2.0 Hz, 1 H), 3.25 (s, 3 H), 5.34 (d, J = 2.0
Hz, 1 H), 6.00-6.04 (m, 1 H), 6.15-6.20 (m, 1
H), 7.12 (t, J = 8.0 Hz, 1 H),
7.34 (m, 1 H), 7.70 (d, J = 7.6
Hz, 1 H), 7.86 (d,
J = 8.0
Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 28.1
(3 ×), 31.2, 55.2, 73.8, 84.7, 95.7, 114.8, 124.3, 125.2,
125.9, 126.1, 129.4, 129.7, 139.0, 149.1, 173.9.
Compound endo-4a: colorless
oil. FTIR (neat): 1780, 1731, 1606, 1478, 1467 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.63 (s,
9 H), 2.32-2.37 (m, 1 H), 2.68-2.73 (m, 1 H),
3.43 (s, 3 H), 5.25 (s, 1 H), 5.98-6.02 (m, 1 H), 6.19-6.23
(m, 1 H), 7.17 (t, J = 8.0 Hz,
1 H), 7.39 (t, J = 8.0 Hz, 1
H), 7.43 (d, J = 8.0 Hz, 1 H),
7.91 (d, J = 8.0 Hz, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 28.1 (3 ×),
30.0, 55.2, 74.1, 84.5, 96.0, 115.3, 123.9, 124.6, 126.2, 126.4,
128.9, 130.2, 139.4, 149.4, 172.5.
Chiral HPLC analysis results: Chiralpak AD-H column, 0.46 × 25 cm, hexane-2-propanol (80:20), flow rate: 1.0 cm³/min, λ = 254 nm; t R (S-isomer) = 7.8 min; t R (R-isomer) = 9.5 min. See also ref. 4i.