References and Notes
- 1 High-Pressure Organic Chemistry.
Part 37. For Part 36, see: Mimoto A.
Nakano K.
Ichikawa Y.
Kotsuki H.
Heterocycles
2010,
80:
799
-
For reviews, see:
-
2a
Lin H.
Danishefsky SJ.
Angew. Chem.
Int. Ed.
2003,
42:
36
-
2b
Dounay AB.
Overman LE.
Chem.
Rev.
2003,
103:
2945
-
2c
Marti C.
Carreira
EM.
Eur. J.
Org. Chem.
2003,
2209
-
2d
Steven A.
Overman LE.
Angew. Chem. Int.
Ed.
2007,
46:
5488
-
2e
Galliford CV.
Scheidt K.
Angew. Chem.
Int. Ed.
2007,
46:
8748
-
2f
Trost BM.
Brennan MK.
Synthesis
2009,
3003
-
2g
Zhou F.
Liu Y.-L.
Zhou J.
Adv.
Synth. Catal.
2010,
352:
1381
-
3a
Tokunaga T.
Hume WE.
Umezome T.
Okazaki K.
Ueki Y.
Kumagai K.
Hourai S.
Nagamine J.
Seki H.
Taiji M.
Noguchi H.
Nagata R.
J. Med. Chem.
2001,
44:
4641
-
3b
Hewawasam P.
Erway M.
Moon SL.
Knipe J.
Weiner H.
Boissard CG.
Post-Munson DJ.
Gao Q.
Huang S.
Gribkoff VK.
Meanwell NA.
J.
Med. Chem.
2002,
45:
1487
-
3c
Tokunaga T.
Hume WE.
Nagamine J.
Kawamura T.
Taiji M.
Nagata R.
Bioorg. Med. Chem. Lett.
2005,
15:
1789
-
3d For a review, see: Peddibhotla S.
Curr. Bioact. Compd.
2009,
5:
20
-
For selected recent examples, see:
-
4a
Lai H.
Huang Z.
Wu Q.
Qin Y.
J. Org. Chem.
2009,
74:
283
-
4b
Angelici G.
Correa RJ.
Garden SJ.
Tomasini C.
Tetrahedron Lett.
2009,
50:
814
-
4c
Qiao X.-C.
Zhu S.-F.
Zhou Q.-L.
Tetrahedron:
Asymmetry
2009,
20:
1254
-
4d
Xue F.
Zhang S.
Liu L.
Duan W.
Wang W.
Chem. Asian
J.
2009,
4:
1664
-
4e
Itoh T.
Ishikawa H.
Hayashi Y.
Org. Lett.
2009,
11:
3854
-
4f
Hara N.
Nakamura S.
Shibata N.
Toru T.
Chem. Eur. J.
2009,
15:
6790 ; and ref cited therein
-
4g
Itoh J.
Han SB.
Krische MJ.
Angew.
Chem. Int. Ed.
2009,
48:
6313
-
4h
Tomita D.
Yamatsugu K.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2009,
131:
6946
-
4i
Chen W.-B.
Du X.-L.
Cun L.-F.
Zhang X.-M.
Yuan W.-C.
Tetrahedron
2010,
66:
1441
-
4j
Hanhan NV.
Sahin AH.
Chang TW.
Fettinger JC.
Franz AK.
Angew. Chem. Int. Ed.
2010,
49:
744
-
4k
Deng J.
Zhang S.
Ding P.
Jiang H.
Wang W.
Li J.
Adv.
Synth. Catal.
2010,
352:
833
-
4l
Raj M.
Veerasamy N.
Singh VK.
Tetrahedron
Lett.
2010,
51:
2157
-
4m
Hara N.
Nakamura S.
Shibata N.
Toru T.
Adv. Synth. Catal.
2010,
352:
1621
-
4n
Vyas DJ.
Fröhlich R.
Oestreich M.
J. Org. Chem.
2010,
75:
6720
-
4o
Chauhan P.
Chimni SS.
Chem. Eur. J.
2010,
16:
7709
-
4p
Guo Q.
Bhanushali M.
Zhao C.-G.
Angew.
Chem. Int. Ed.
2010,
49:
9460
-
4q
Shintani R.
Takatsu K.
Hayashi T.
Chem.
Commun.
2010,
46:
6822
-
4r
Liu Y.-L.
Wang B.-L.
Cao J.-J.
Chen L.
Zhang
Y.-X.
Wang C.
Zhou J.
J.
Am. Chem. Soc.
2010,
132:
15176
-
4s
Zhong F.
Chen G.-Y.
Lu Y.
Org.
Lett.
2011,
13:
82
-
4t
Wang C.-C.
Wu X.-Y.
Tetrahedron
2011,
67:
2974
-
4u
Liu Z.
Gu P.
Shi M.
McDowell P.
Li G.
Org. Lett.
2011,
13:
2314
-
For selected recent examples, see:
-
5a
see Ref. 3b.
-
5b
Ishimaru T.
Shibata N.
Nagai J.
Nakamura S.
Toru T.
Kanemasa S.
J. Am. Chem. Soc.
2006,
128:
16488
-
5c
Sano D.
Nagata K.
Itoh T.
Org.
Lett.
2008,
10:
1593
-
5d
Bui T.
Candeias NR.
Barbas CF.
J. Am. Chem. Soc.
2010,
132:
5574
-
For a related work on the synthesis
of 4-type compounds, see:
-
6a
Castaldi MP.
Troast DM.
Porco JA.
Org. Lett.
2009,
11:
3362
-
6b
Hari Babu T.
Karthik K.
Perumal PT.
Synlett
2010,
1128
-
6c
Ueno S.
Ohtsubo M.
Kuwano R.
Org.
Lett.
2010,
12:
4332
-
Recently, a new strategy using homologous cycloaddition
was disclosed:
-
6d
Hazra A.
Paira P.
Sahu KB.
Naskar S.
Saha P.
Paira R.
Mondal S.
Maity A.
Luger P.
Weber M.
Mondal NB.
Banerjee S.
Tetrahedron
Lett.
2010,
51:
1585
-
6e
Wang X.-N.
Zhang Y.-Y.
Ye S.
Adv.
Synth. Catal.
2010,
352:
1892
- 7
Mori K.
Maddaluno J.
Nakano K.
Ichikawa Y.
Kotsuki H.
Synlett
2009,
2346
- 12
Lattanzi A.
Synlett
2007,
2106
- 13 The observed low diastereoselectivities
can be ascribed to the weak secondary π-orbital interactions;
however, it is likewise difficult to rule out stepwise cyclization
pathways. See: Danishefsky SJ.
Larson E.
Askin D.
Kato N.
J. Am. Chem. Soc.
1985,
107:
1246
8 Most of these catalysts are known.
The new catalysts, 1a, 1b, 1d, 1f, and 1g, were simply prepared by condensation
of 3,5-bis(trifluoromethyl)phenylisothiocyanate with chiral amine precursors. 1a: mp 130.5-133 ˚C (hexane-CH2Cl2), [α]D
²6
-16.4
(c = 1.0, CHCl3); 1b: mp 48-50 ˚C (hexane-CH2Cl2), [α]D
²0 -93.7
(c = 1.0, CHCl3); 1d: mp 129.0-132.0 ˚C (hexane-CH2Cl2), [α]D
²¹ +48.8
(c = 0.90, CHCl3); 1f: mp 151-153 ˚C (hexane-CH2Cl2), [α]D
²6 +3.96
(c = 0.15, CHCl3); 1g: mp 149.5-151 ˚C (hexane-CH2Cl2), [α]D
²6 +10.3
(c = 0.16, CHCl3).
9
General Procedure:
A mixture of diene 2 (1.0 mmol) and ketone 3 (0.25 mmol) in the presence of 1a (0.1 mmol) in toluene or CH2Cl2 (ca.
2.5 mL) was placed in a Teflon reaction vessel, and the mixture
was allowed to react at 1.0 GPa and r.t. for 12 h. After the pressure
was released, the mixture was concentrated and purified by silica
gel column chromatography (elution with hexane-Et2O)
to afford the pure adduct 4.
10 At lower pressures, the yield and
enantioselectivity were both decreased for the reaction of 2a with 3a using
30 mol% of 1e in CH2Cl2:
at 0.6 GPa, r.t., 4.5 d, 31% yield, exo-4a (49% ee, R), endo-4a (62% ee, R).
11 Not optimized.
14 In general, the exo-adducts
were less polar than the endo-adducts.
TLC data (hexane-EtOAc, 4:1); exo-4a: R
f 0.42
and endo-4a: R
f
0.34.
Compound exo-4a: colorless
oil. FTIR (neat): 1777, 1733, 1606, 1478, 1467 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.65 (s,
9 H), 2.26 (dd, J = 17.6, 6.0
Hz, 1 H), 2.71 (ddd, J = 17.6,
6.0, 2.0 Hz, 1 H), 3.25 (s, 3 H), 5.34 (d, J = 2.0
Hz, 1 H), 6.00-6.04 (m, 1 H), 6.15-6.20 (m, 1
H), 7.12 (t, J = 8.0 Hz, 1 H),
7.34 (m, 1 H), 7.70 (d, J = 7.6
Hz, 1 H), 7.86 (d,
J = 8.0
Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 28.1
(3 ×), 31.2, 55.2, 73.8, 84.7, 95.7, 114.8, 124.3, 125.2,
125.9, 126.1, 129.4, 129.7, 139.0, 149.1, 173.9.
Compound endo-4a: colorless
oil. FTIR (neat): 1780, 1731, 1606, 1478, 1467 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.63 (s,
9 H), 2.32-2.37 (m, 1 H), 2.68-2.73 (m, 1 H),
3.43 (s, 3 H), 5.25 (s, 1 H), 5.98-6.02 (m, 1 H), 6.19-6.23
(m, 1 H), 7.17 (t, J = 8.0 Hz,
1 H), 7.39 (t, J = 8.0 Hz, 1
H), 7.43 (d, J = 8.0 Hz, 1 H),
7.91 (d, J = 8.0 Hz, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 28.1 (3 ×),
30.0, 55.2, 74.1, 84.5, 96.0, 115.3, 123.9, 124.6, 126.2, 126.4,
128.9, 130.2, 139.4, 149.4, 172.5.
15 Chiral HPLC analysis results: Chiralpak
AD-H column, 0.46 × 25 cm, hexane-2-propanol (80:20),
flow rate: 1.0 cm³/min, λ = 254
nm; t
R (S-isomer) = 7.8
min; t
R (R-isomer) = 9.5
min. See also ref. 4i.