Synlett 2011(14): 1993-1996  
DOI: 10.1055/s-0030-1261170
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

N-Boc-O-Tosyl Hydroxylamine as a Safe and Efficient Nitrogen Source for the N-Amination of Aryl and Alkyl Amines: Electrophylic Amination

Thankappan Baburaja, Sivalingam Thambidurai*b
a Anthem Biosciences Pvt. Ltd,, Bommasandra Industrial Area, Phase I, 49, Canara Bank Road, Bangalore 560 099, India
b Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
Fax: +91(4565)225202; e-Mail: sthambi01@yahoo.co.in;
Further Information

Publication History

Received 26 April 2011
Publication Date:
10 August 2011 (online)

Abstract

β-Boc-protected aryl and alkyl hydrazines, useful intermediates for azapeptides and N-substituted pyrazoles, were synthesized by electrophylic amination methodology, using less energetic N-Boc-O-tosyl hydroxylamine as an efficient nitrogen source. Also we have demonstrated a two-step, chromatography-free synthesis of N-Boc-O-tosyl hydroxylamine.

    References

  • 1a Melendez RE. Lubell WD. J. Am. Chem. Soc.  2004,  126:  6759 
  • 1b Boeglin D. Lubell WD. J. Comb. Chem.  2005,  7:  664 
  • 2a Dutta AS. Morley JS. J. Chem. Soc., Perkin Trans. 1  1975,  1712 
  • 2b Dutta AS. Giles MB. J. Chem. Soc., Perkin Trans. 1  1986,  1655 
  • 3 Abbas C. Pickaert G. Didierjean C. Gregoire BJ. Vanderesse R. Tetrahedron Lett.  2009,  50:  4158 
  • 4 Amstrong A. Jones LH. Knight JD. Kelsey RD. Org. Lett.  2005,  7:  713 
  • 5 Perni RB. Gribble GW. Org. Prep. Proced. Int.  1982,  14:  343 
  • 6 Walton E. Jenkins SR. Nutt RF. Holly FW. J. Med. Chem.  1968,  11:  1252 
  • 7 Bodio E. Synlett  2008,  1744 ; and references cited therein
  • 8a Hynes J. Doubleday WW. Dyckman AJ. Godfrey JD. Grosso JA. Kiau S. Leftheris K.
    J. Org. Chem.  2004,  69:  1368 
  • 8b Bhattacharya A. Patel NC. Plata RE. Peddicord M. Ye Q. Parlanti L. Palaniswamy VA. Grosso JA. Tetrahedron Lett.  2006,  47:  5341 
  • 9 Parlanti L. Discordia RP. Hynes J. Miller MM. O’Grady HR. Shi Z. Org. Lett.  2007,  9:  3821 
  • 10a Vidal J. Damestoy S. Guy L. Hannachi JC. Aubry A. Collet A. Chem. Eur. J.  1997,  3:  1691 
  • 10b Vidal J. Guy L. Sterins S. Collet A. J. Org. Chem.  1993,  58:  4791 
  • 11 Vidal J. Hannachi JC. Hourdin G. Mlatier JC. Collet A. Tetrahedron Lett.  1998,  39:  8845 
  • 12 Vidal J. Guy L. Sterin S. Collet A. J. Org. Chem.  1993,  58:  4791 
  • 13 Radhakrishna AS. Loudon GM. Miller MJ. J. Org. Chem.  1979,  44:  4836 
  • 14 Carpino LA. Giza CA. Carpino BA. J. Am. Chem. Soc.  1959,  81:  955 
  • 15 Genet JP. Mallart S. Greck C. Piveteau E. Tetrahedron Lett.  1991,  32:  2359 
  • 16 Andrews DM. Foote KM. Matusiak ZM. Arnould JC. Boutron P. Delouvrie B. Delvare C. Hamon A. Harris CS. Lambert-van der Brempt C. Lamorlette M. Tetrahedron  2009,  65:  5805 
  • 18 Boyles DC. Curran TT. Parlett RV. Org. Process Res. Dev.  2002,  6:  230 
17

Typical Procedure for 5 To a stirred solution of hydroxylamine (25 mL, 40% w/v, 0.3 mol) in MeOH (100 mL) was added NaHCO3 (27.7 g, 0.33 mol) and then (Boc)2O (72.0 g, 0.33 mol) dropwise over a period of 30 min, by maintaining the reaction temperature at 20-25 ˚C. After stirring the reaction mixture at 25 ˚C for 5 h, MeOH was removed under vacuum, and the residue was diluted with H2O (200 mL) and extracted with EtOAc (2 × 100 mL). The combined organic layer was dried over Na2SO4 and concentrated. The crude Boc-hydroxylamine obtained was diluted with CH2Cl2 (200 mL), cooled to 0 ˚C and was added NMM (60.6 g, 0.6 mol) and then tosyl chloride (63 g, 0.33 mol) in CH2Cl2 (200 mL), dropwise over a period of 1 h. After stirring at r.t. for 3 h, the reaction mixture was diluted with H2O (500 mL), and the organic layer was separated, washed with H2O (250 mL), 5% citric acid solution in H2O (2 × 100 mL), dried over Na2SO4 and concentrated. The resulting residue was crystallized from 20% EtOAc in PE to afford the pure product as white solid. ¹H NMR (300 MHz, CDCl3): δ = 1.32 (s, 9 H), 2.48 (s, 3 H), 7.38 (d, J = 8.4 Hz, 2 H), 7.61 (s, 1 H), 7.90 (d, J = 8.4 Hz, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 21.7, 27.7, 83.8, 129.6, 129.7, 130.7, 146.0, 154.3.

19

Even though 5 is less energetic compared to other aminating reagents, keeping safety as priority we carried out all reactions and workup at temperatures below 50 ˚C.

20

Typical Procedure for Aryl Amines (Method A) To a stirred solution of 4-methoxyaniline (1 g, 8.13 mmol) in DMF (10 ml) was added K2CO3 (1.46 g, 10.57 mmol), and the reaction mixture was cooled to ca. 10 ˚C. To this was added BocNHOTs (2.8 g, 9.76 mmol) and stirred at r.t. for 2 h. Reaction mixture was diluted with H2O, and the resulting solid was filtered and dried under suction. The dried solid was crystallized from 3% EtOAc in PE to afford the pure product as brown solid. ¹H NMR (300 MHz, CDCl3): δ = 1.34 (s, 9 H), 3.81 (s, 3 H), 6.68 (br s, 1 H), 6.89 (dd, J = 9.0, 2.1 Hz, 2 H), 7.38 (dd, J = 9.0, 2.1 Hz, 2 H), 7.44 (br s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 26.4, 55.5, 81.4, 114.3, 121.8, 130.3, 156.3, 158.5. LC-MS: m/z = 239.3 [M + H+].

21

Typical Procedure for Alkyl Amines (Method B) To a stirred solution of morpholine (0.5 g, 5.74 mmol) in CH2Cl2 (10 mL) was added NMM (0.75 g, 7.46 mmol), and the reaction mixture was cooled to ca. 10 ˚C and then added BocNHOTs (1.98 g, 6.90 mmol), and the reaction mixture was stirred at r.t. for 18 h. Reaction mixture was diluted with H2O and extracted with CH2Cl2 (2 × 10 mL). The combined organic layer was dried over Na2SO4 and concentrated. The crude obtained was purified by flash column chromatog-raphy to get the pure product as yellow liquid. ¹H NMR (300 MHz, CDCl3): δ = 1.27 (s, 9 H), 3.42 (t, J = 4.8 Hz, 4 H), 3.70 (t, J = 4.8 Hz, 4 H), 6.86 (br s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 26.3, 43.9, 66.4, 80.4, 159.9. LC-MS: 203.3
[M + H+].