Synlett 2011(15): 2223-2227  
DOI: 10.1055/s-0030-1261181
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Practical and Cost-Efficient, One-Pot Conversion of Aldehydes into Nitriles Mediated by ‘Activated DMSO’

John Kallikat Augustine*a, Agnes Bombrunb, Rajendra Nath Attaa
a Syngene International Ltd., Biocon Park, Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore - 560 099, India
Fax: +91(80)28083150; e-Mail: john.kallikat@syngeneintl.com;
b Merck Serono SA, 9 Chemin des Mines, 1202 Geneva, Switzerland
Weitere Informationen

Publikationsverlauf

Received 20 April 2011
Publikationsdatum:
12. August 2011 (online)

Abstract

Participation of ‘activated DMSO’ in the one-pot transformation of aldehydes to nitriles has been described by reacting aldehydes with NH2OH˙HCl in DMSO in the absence of any added base or catalyst. The method is applicable to access a wide range of aromatic, heterocyclic, and aliphatic nitriles, in which only water is a byproduct. A straightforward and practical procedure is demonstrated on a multigram scale.

    References and Notes

  • 1a Friedrich K. Wallenfels K. In The Chemistry of the Cyano Group   Rappaport Z. Wiley-Interscience; New York: 1970.  p.67 
  • 1b Miller JS. Manson JL. Acc. Chem. Res.  2001,  34:  563 
  • 1c Fatiadi AJ. In Preparation and Synthetic Applications of Cyano Compounds   Patai S. Rappaport Z. Wiley; New York: 1983.  p.1057 
  • 2a North M. In Comprehensive Organic Functional Group Transformations   Katrizky AR. Meth-Cohn O. Rees CW. Pergamon; Oxford: 1995.  p.617 
  • 2b Mowry DT. Chem. Rev.  1948,  42:  250 
  • 3a Desai DG. Swami SS. Mahale GD. Synth. Commun.  2000,  30:  1623 
  • 3b Katritzky AR. Zhang GF. Fan W. Q. Org. Prep. Proced. Int.  1993,  25:  315 
  • 3c Forey HG. Datlon DR. J. Chem. Soc., Chem. Commun.  1973,  628 
  • 3d Kukhar VP. Pasternak VI. Synthesis  1974,  563 
  • 3e Shinozaki H. Imaizumi M. Tajima M. Chem. Lett.  1983,  929 
  • 3f Meshram HM. Synthesis  1992,  943 
  • 3g Findlay JA. Tang CS. Can. J. Chem.  1967,  45:  1014 
  • 4a Brackman W. Smit PJ. Recl. Trav. Chim. Pays-Bas  1963,  82:  757 
  • 4b Sato R. Itoh Y. Itep K. Nihina H. Goto T. Saito M. Chem. Lett.  1984,  1913 
  • 4c Erman MB. Snow JW. Williams MJ. Tetrahedron Lett.  2000,  41:  6749 
  • 4d Talukdar S. Hsu JL. Chou TC. Fang JM. Tetrahedron Lett.  2001,  42:  1103 
  • 4e Bandgar BP. Makone SS. Synth. Commun.  2006,  36:  1347 
  • 4f Arote ND. Bhalerao DS. Akamanchi KG. Tetrahedron Lett.  2007,  48:  3651 
  • 4g Telvekar VN. Patel KN. Kundaikar HS. Chaudhari HK. Tetrahedron Lett.  2008,  49:  2213 
  • 5a Kumar HMS. Reddy BVS. Reddy PT. Yadav JS. Synthesis  1999,  586 
  • 5b Karmarkar SN. Kelkar SL. Wadia MS. Synthesis  1985,  510 
  • 5c Blatter HM. Lukaszewski H. de Stevens G. J. Am. Chem. Soc.  1961,  83:  2203 
  • 5d Olah GA. Keumi T. Synthesis  1979,  112 ; and references cited therein
  • 5e Dauzonne D. Demerseman P. Royer R. Synthesis  1981,  739 
  • 5f Saednya A. Synthesis  1982,  190 
  • 5g Ganboa I. Palomo C. Synth. Commun.  1983,  13:  219 
  • 5h Capdevielle P. Lavigne A. Maumy M. Synthesis  1989,  451 
  • 5i Bose DS. Narsaiah AV. Tetrahedron Lett.  1998,  39:  6533 
  • 6a Olah GA. Vankar YD. Synthesis  1978,  702 
  • 6b Olah GA. Narang SC. Garcia LA. Synthesis  1980,  659 
  • 7 Georg GI. Pfeifer SA. Haake M. Tetrahedron Lett.  1985,  26:  2739 
  • 8a Stankovic S. Espenson H. Chem. Commun.  1998,  1579 
  • 8b Rudler H. Denise B. Chem. Commun.  1998,  2145 
  • 9a Fernandez R. Gasch C. Lassaleta J. Llera J. Vazquezz J. Tetrahedron Lett.  1993,  34:  141 
  • 9b Said SB. Skarzewski J. Mlochowski J. Synthesis  1989,  223 
  • 9c Mlochowski J. Kloc K. Kubicz E. J. Prakt. Chem.  1994,  336:  467 
  • 10 Murahashi SI. Shiota T. Imada Y. Org. Synth.  1991,  70:  265 
  • 11 For various methods of DMSO activation, see: Tidwell TT. Synthesis  1990,  857 ; and references cited therein
  • 12a Epstein WW. Sweat FW. Chem. Rev.  1967,  67:  247 
  • 12b De Luca L. Giampaolo G. Porcheddu A. J. Org. Chem.  2001,  66:  7907 
  • 12c Liu Y. Vederas JC. J. Org. Chem.  1996,  61:  7856 
  • 12d Murray RW. Gu D. J. Chem. Soc., Perkin Trans. 2  1994,  451 
  • 12e Pfitzner KE. Moffatt JG. J. Am. Chem. Soc.  1963,  85:  3027 
  • 12f Taber DF. Amedio JC. Jung K. J. Org. Chem.  1987,  52:  5621 
  • 12g Marx M. Tidwell TT. J. Org. Chem.  1984,  49:  788 
  • 12h Albright JD. J. Org. Chem.  1974,  39:  1977 
  • 12i Albright JD. Goldman L. J. Org. Chem.  1967,  32:  2416 
  • 12j Omura K. Swern D. Tetrahedron  1978,  34:  1651 
  • 12k Mancuso AJ. Brownfain DS. Swern D. J. Org. Chem.  1979,  44:  4148 
  • 12l Mancuso AJ. Huang S.-L. Swern D. J. Org. Chem.  1978,  43:  2480 
  • 13 Augustine JK. Atta RN. Ramappa BK. Boodappa C. Synlett  2009,  3378 
  • 14 Li Z. Xua X. Penga Y. Jianga Z. Dinga C. Qian X. Synthesis  2005,  1228 
  • 16 Bordwell FG. Acc. Chem. Res.  1988,  21:  456 
  • 17 Yadav LDS. Srivastava VP. Patel R. Tetrahedron Lett.  2009,  50:  5532 
15

The products were not contaminated with any side products, such as Pummerer rearrangement products.

18

General Procedure for Nitrile Synthesis from Aldehydes
A mixture of aldehyde (1 equiv) and NH2OH˙HCl (1.1 equiv) in DMSO (3-5 volumes depending on homogeneity of mixture) was stirred at 90 ˚C for 1-2 h. When the reaction was completed as confirmed by TLC (5% EtOAc in hexane), the mixture was cooled and diluted with H2O. The solid precipitated was collected by filtration, washed with H2O, and dried under suction to afford the corresponding nitrile in excellent yield. Alternatively, the reaction mixture could be poured onto H2O and extracted with Et2O. The organic phase could be evaporated to afford the nitrile with good purity and yield. This method is suitable for the isolation of liquid and aliphatic nitriles.