Subscribe to RSS
DOI: 10.1055/s-0030-1261192
Exploring a Unique Reactivity of 6π-Azaelectrocyclization to Enzyme Inhibition, Natural Products Synthesis, and Molecular Imaging: An Approach to Chemical Biology by Synthetic Chemists
Publication History
Publication Date:
24 August 2011 (online)
Abstract
While elucidating the inhibitory mechanism of a hydrolytic enzyme by aldehyde-containing natural products, we discovered a reaction involving a rapid 6π-azaelectrocyclization of azatrienes generated from aldehyde with lysine residues. The electrocyclic reaction of the 1-azatriene system, a cyclization precursor, exhibited a substituent effect. Structure-reactivity studies showed that azaelectrocyclization, which usually proceeds in low yield at high temperatures, produced a quantitative yield in less than 5 minutes at room temperature. Asymmetric chiral piperidine synthesis and a one-pot library synthesis of pyridines on solid supports were applied to synthesize pyridine/indole alkaloid-type natural products. Additionally, we developed lysine-based labeling and engineering of biomolecules and living cells based on the rapid 6π-azaelectrocyclization. Both 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a metal chelating agent and fluorescent groups, as well as oligosaccharide structures were introduced efficiently and selectively into surface lysines within 10 minutes at concentrations as low as 10-8 M. The DOTA-labeled somatostatin and glycoproteins were then radiometallated with 68Ga; the receptor-mediated accumulation of somatostatin in pancreas and the oligosaccharide-dependent circulatory residence of glycoproteins were visualized by microPET for the first time. Furthermore, we succeeded to image the trafficking of the fluorescence-labeled lymphocytes noninvasively, while the N-glycan-engineered lymphocytes targeted the colon carcinoma in tumor mouse model; the tumor-targeting cells were thus synthesized using our 6π-azaelectrocyclization.
1 Introduction
2 Discovery of Smooth 6π-Azaelectrocyclization: Inhibitory Mechanism of Bovine Pancreatic Phospholipase A2 by Unsaturated Aldehyde Terpenoids
3 Renaissance of 6π-Azaelectrocyclization: Remarkable Acceleration by Substituent Effects
3.1 Synthesis of 3-cis-1-Azatriene Derivatives and Their Reactivities toward Azaelectrocyclization
3.2 Rationale for Acceleration of 6π-Azaelectrocyclization by Computational Analysis
4. 6π-Azaelectrocyclization as a New Strategy for Natural Products Synthesis
4.1 One-Pot Pyridine Synthesis: Formal Synthesis of the Ocular Age Pigment A2-E
4.2 Library-Directed One-Pot Solution and Solid-Phase Synthesis of 2,4-Disubstituted Pyridines
4.3 Highly Stereoselective Asymmetric 6π-Azaelectrocyclization
4.4 Application to Natural Alkaloid Synthesis: Formal Synthesis of 20-Epiuleine
5 6π-Azaelectrocyclization-Based Microgram-Scale Labeling of Peptides and Proteins: Biomolecule-Based In Vivo Imaging
5.1 Development of Non-Destructive Lys-Labeling Kit ‘Stella + ’ by 6π-Azaelectrocyclization
5.2 Positron Emission Tomography (PET) of Biomolecules: First Visualization of Somatostatin Accumulation to Pancreas and Sialic Acid Dependent Circulatory Residence of Glycoproteins
6 Labeling and Engineering of Living Cells by Azaelectrocyclization
6.1 Fluorescence Labeling of Living Cell Surfaces
6.2 Chemical Engineering of Cell Surfaces by Functional Molecules
6.3 In Vivo Fluorescence Imaging of Lymphocytes and Effects of Cell Surface Engineering by N-Glycan
7 Site-Selective and Non-Destructive Protein Labeling via Azaelectrocyclization-Induced Cascade Reactions
8 Conclusion
Keywords
synthetic (chemical) biology - 6π-azaelectrocyclization - enzyme inhibition - lysine - natural products synthesis - chiral piperidine - pyridine - labeling - PET (positron emission tomography) - fluorescence - glycoproteins - lymphocytes - cell surface engineering - tumor targeting
- 1
Dennis EA. In The Enzymes 16Boyer PD. Academic Press; New York: 1983. p.307 - 2
Pace-Asciak CR.Smith WL. In The Enzymes 16Boyer PD. Academic Press; New York: 1983. p.543 - 3
Noel JP.Bingman CA.Deng T.Dupureur CM.Hamilton KJ.Jiang R.-T.Kwak J.-G.Sekharudu C.Sundaralingam M.Tsai M.-D. Biochemistry 1991, 30: 11801 -
4a
Katsumura S.Han Q.Kadono H.Fujiwara S.Isoe S.Fujii S.Nishimura H.Ikeda K. Bioorg. Med. Chem. Lett. 1992, 2: 1263 -
4b
Katsumura S.Hart Q.Fujiwara S.Isoe S.Nishimura H.Inoue S.Ikeda K. Bioorg. Med. Chem. Lett. 1992, 2: 1267 -
4c
Fujii S.Tahara Y.Toyomoto M.Hada S.Nishimura H.Inoue S.Ikeda K.Inagaki Y.Katsumura S.Samejima Y.Omoil-Satoh T.Takasaki C.Hayashi K. Biochem. J. 1995, 308: 297 - 5
Potts BCM.Faulkner DJ.Jacobs RS. J. Nat. Prod. 1992, 55: 1701 -
6a
Tanaka K.Mori H.Fujii S.Itagaki Y.Katsumura S. Tetrahedron Lett. 1998, 39: 1185 -
6b
Tanaka K.Kamatani M.Mori H.Fujii S.Ikeda K.Hisada M.Itagaki Y.Katsumura S. Tetrahedron 1999, 55: 1657 -
6c
Tanaka K.Katsumura S. J. Synth. Org. Chem. Jpn. 1999, 57: 876 - 7
Katsumura S.Hori K.Fujiwara S.Isoe S. Tetrahedron Lett. 1985, 26: 4625 - 8
de Lera AR.Reischl W.Okamura WH. J. Am. Chem. Soc. 1989, 111: 4051 - 9
Marvell EN. Thermal Electrocyclic Reactions Academic Press; New York: 1980. -
10a
Marvell EN.Caple G.Schatz B.Pippin W. Tetrahedron 1973, 29: 3781 -
10b
Marvell EN.Caple G.Delphey C.Platt J.Polston N.Tashiro J. Tetrahedron 1973, 29: 3797 - 11
Spangler CW.Jondahl TP.Spangler B. J. Org. Chem. 1973, 38: 2478 -
12a
Palenzuela JA.Elnagar HY.Okamura WH. J. Am. Chem. Soc. 1989, 111: 1770 -
12b
Zhu G.-D.Okamura WH. Chem. Rev. 1995, 95: 1877 -
12c
Okamura WH.de Lera AR. Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. , Volume Editor; Pergamon Press; London: 1991. Chap. 6.2. p.699-750 - 13
Schiess P.Chia HL.Ringele P. Tetrahedron Lett. 1972, 313 -
14a
Cheng Y.-S.Lupo AT.Fowler FW. J. Am. Chem. Soc. 1983, 105: 7696 -
14b
Wyle MJ.Fowler FW. J. Org. Chem. 1984, 49: 4025 - 15
Maynard DF.Okamura WH. J. Org. Chem. 1995, 60: 1763 - 16
Tanaka K.Mori H.Yamamoto M.Katsumura S. J. Org. Chem. 2001, 66: 3099 - 17
Tso MOM. Invest. Ophthalmol. Visual Sci. 1989, 30: 2430 - 18
Sakai N.Decatur J.Nakanishi K. J. Am. Chem. Soc. 1996, 118: 1559 - 19
Tanaka K.Katsumura S. Org. Lett. 2000, 2: 373 -
20a
Kobayashi T.Hatano S.Tsuchikawa H.Katsumura S. Tetrahedron Lett. 2008, 49: 4349 -
20b
Sakaguchi T.Kobayashi T.Hatano S.Tsuchikawa H.Fukase K.Tanaka K.Katsumura S. Chem. Asian J. 2009, 4: 1573 -
21a
Tanaka K.Katsumura S. J. Am. Chem. Soc. 2002, 124: 9660 -
21b
Tanaka K.Kobayashi T.Mori H.Katsumura S. J. Org. Chem. 2004, 69: 5906 -
21c
Tanaka K.Katsumura S. J. Synth. Org. Chem. Jpn. 2005, 63: 697 ; See also ref. 23e -
22a
Hsung RP.Wei L.-L.Sklenicka HM.Douglas CJ.McLaughlin MJ.Mulder JA.Yao LJ. Org. Lett. 1999, 1: 509 -
22b
Sklenicka HM.Hsung RP.Wei L.-L.McLaughlin MJ.Gerasyuto AI.Degen SJ. Org. Lett. 2000, 2: 1161 -
22c
Sklenicka HM.Hsung RP.McLaughlin MJ.Wei L.-l.Gerasyuto AI.Brennessel WB. J. Am. Chem. Soc. 2002, 124: 10435 -
22d
McLaughlin MJ.Hsung RP.Cole KP.Hahn JM.Wang J. Org. Lett. 2002, 4: 2017 -
22e
Luo S.Zificsak CA.Hsung RP. Org. Lett. 2003, 5: 4709 -
23a
Kobayashi T.Nakashima M.Hakogi T.Tanaka K.Katsumura S. Org. Lett. 2006, 8: 3809 -
23b
Kobayashi T.Hasegawa F.Tanaka K.Katsumura S. Org. Lett. 2006, 8: 3813 -
23c
Li Y.Kobayashi T.Katsumura S. Tetrahedron Lett. 2009, 50: 4482 -
23d
Kobayashi T.Takeuchi K.Miwa J.Tsuchikawa H.Katsumura S. Chem. Commun. 2009, 3363 -
23e
Sakaguchi T.Kobayashi S.Katsumura S. Org. Biomol. Chem. 2011, 9: 257 - 24
Kobayashi T.Tanaka K.Miwa J.Katsumura S. Tetrahedron: Asymmetry 2004, 15: 185 - 25
Bosch J.Bonjoch J. Pentacyclic Strychnos Indole Alkaloids, In Studies in Natural Products Chemistry Vol. 1: . Elsevier; Amsterdam: 1988. p.31-88 - 26
Grierson DS.Harris M.Husson H.-P. Tetrahedron 1983, 39: 3683 - 27
Gambhir SS. Nat. Rev. Cancer 2002, 2: 683 -
28a
Tanaka K.Fukase K. Org. Biomol. Chem. 2008, 6: 815 -
28b
Tanaka K.Fukase K. Mini-Rev. Org. Chem. 2008, 5: 153 - 29
Lewis MR.Kao JY.Anderson A.-LJ.Shively JE.Raubitschek A. Bioconjugate Chem. 2001, 12: 320 - 30
Tanaka K.Masuyama T.Hasegawa K.Tahara T.Mizuma H.Wada Y.Watanabe Y.Fukase K. Angew. Chem. Int. Ed. 2008, 47: 102 -
31a
Chen I.Ting AY. Curr. Opin. Biotech. 2005, 16: 35 -
31b
Miller LW.Cornish VW. Curr. Opin. Chem. Biol. 2005, 9: 56 -
31c
Takaoka Y.Tsutsumi H.Kasagi N.Nakata E.Hamachi I. J. Am. Chem. Soc. 2006, 128: 3273 - 33
Maecke HR.Hofmann M.Haberkorn U. J. Nucl. Med. 2005, 46: 172S - 34
Morell AG.Irvine RA.Sternlieb I.Scheinberg IH.Ashwell G. J. Biol. Chem. 1968, 243: 155 - 35
Tanaka K.Minami K.Tahara T.Fujii Y.Siwu ERO.Nozaki S.Onoe H.Yokoi S.Koyama K.Watanabe Y.Fukase K. ChemMedChem 2010, 5: 841 -
36a
Sivakumar K.Xie F.Cash BM.Long S.Barnhill HN.Wang Q. Org. Lett. 2004, 6: 4603 -
36b
Hanson SR.Hsu TL.Weerapana E.Kishikawa K.Simon GM.Cravatt BF.Wong CH. J. Am. Chem. Soc. 2007, 129: 7266 -
36c
Paulick MG.Forstner MB.Groves JT.Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2007, 104: 20332 -
36d
Rabuka D.Forstner MB.Groves JT.Bertozzi CR. J. Am. Chem. Soc. 2008, 130: 5947 -
36e
Tanaka Y.Kohler J. J. Am. Chem. Soc. 2008, 130: 3278 -
37a
Saxon E.Bertozzi CR. Science 2000, 287: 2007 -
37b
Kiick KL.Saxon E.Tirrell DA.Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2002, 99: 19 -
37c
Vocadlo DJ.Hang HC.Kim EJ.Hanover JA.Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2003, 100: 9116 -
37d
Chang PV.Prescher JA.Hangauer MJ.Bertozzi CR. J. Am. Chem. Soc. 2007, 129: 8400 - 38
Hangauer MJ.Bertozzi CR. Angew. Chem. Int. Ed. 2008, 47: 2394 -
39a
Agard NJ.Prescher JA.Bertozzi CR. J. Am. Chem. Soc. 2004, 126: 15046 -
39b
van Berkel SS.Dirks ATJ.Debets MF.van Delft FLM.Cornelissen JJL.Nolte RJM.Rutjes FPJT. ChemBioChem 2007, 8: 1504 -
39c
Lutz JF. Angew. Chem. Int. Ed. 2008, 47: 2182 -
39d
Fernandez-Suarez M.Baruah H.Martinez-Hernandez L.Xie KT.Baskin JM.Bertozzi CR.Ting AY. Nat. Biotechnol. 2007, 25: 1483 -
39e
Sletten EM.Bertozzi CR. Org. Lett. 2008, 10: 3097 -
40a
Luchansky SJ.Bertozzi CR. ChemBioChem 2004, 5: 1706 -
40b
Agard NJ.Baskin JM.Prescher JA.Lo A.Bertozzi CR. ACS Chem. Biol. 2006, 1: 644 -
40c
Prescher JA.Bertozzi CR. Cell 2006, 126: 851 -
41a
Baskin JM.Prescher JA.Laughlin ST.Agard NJ.Chang PV.Miller IA.Lo A.Codelli JA.Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2007, 104: 16793 -
41b
Codelli JA.Baskin JM.Agard NJ.Bertozzi CR. J. Am. Chem. Soc. 2008, 130: 11486 -
41c
Laughlin ST.Baskin JM.Amacher SL.Bertozzi CR. Science 2008, 320: 664 - 42
Ning X.Guo J.Wolfert MA.Boons G.-J. Angew. Chem. Int. Ed. 2008, 47: 2253 - 43
Tanaka K.Minami K.Tahara T.Siwu ERO.Koyama K.Nozaki S.Onoe H.Watanabe Y.Fukase K. J. Carbohydr. Chem. 2010, 29: 118 - 44
Grobben B.De Deyn PP.Slegers H. Cell Tissue Res. 2002, 310: 257 - 45
Hannah MJ.Weiss U.Huttner WB. Methods 1998, 16: 170 - 46
Broekaert WF.Nsimba-Lubaki M.Peeters B.Peumans WJ. Biochem. J. 1984, 221: 163 -
47a
Matsui K.Wang Z.McCarthy TJ.Allen PM.Reichert DE. Nucl. Med. Biol. 2004, 31: 1021 -
47b
Sieber SA.Cravatt BF. Chem. Commun. 2006, 2311 -
47c
Radu CG.Shu CJ.Nair-Gill E.Shelly SM.Barrio JR.Satyamurthy N.Phelps ME.Witte ON. Nat. Med. 2008, 14: 783 - 48
Tanaka K.Siwu ERO.Minami K.Hasegawa K.Nozaki S.Kanayama Y.Koyama K.Chen WC.Paulson JC.Watanabe Y.Fukase K. Angew. Chem. Int. Ed. 2010, 49: 8195 - 49
Tanaka K.Fujii Y.Fukase K. ChemBioChem 2008, 9: 2392
References
Labeling kit ‘STELLA+’ is available from Kishida Chemical Co., Ltd., http://www.kishida.co.jp/.