Synlett 2011(16): 2430-2432  
DOI: 10.1055/s-0030-1261225
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

5-Adamantylated 1,2,4-Trioxanes: Adamantane Position is Crucial for Antiparasitic Activity

Axel G. Griesbeck*, Viktor Schlundt
University of Cologne, Department of Chemistry, Organic Chemistry, Greinstr. 4, 50939 Köln, Germany
Fax: +49(221)470 5057; e-Mail: griesbeck@uni-koeln.de;
Further Information

Publication History

Received 18 May 2011
Publication Date:
08 September 2011 (online)

Abstract

Allylic alcohols with 1′- and 2′-adamantanyl functionalization, available by reaction of 3-methylcrotonaldehyde with 1- and 2-bromoadamantane, respectively, were reacted with singlet oxygen under solution conditions with high diastereoselectivities to give the β-hydroperoxy alcohols. Lewis acid catalyzed peroxyacetalization of the β-hydroperoxy alcohols resulted in two sets of 1,2,4-trioxanes. The allylic alcohol 11 delivered the rearrangement product - the less strained primary hydroperoxide - upon singlet oxygenation and Lewis acid treatment.

    References and Notes

  • 1 Klayman DL. Science  1985,  228:  1049 
  • 2a Griesbeck AG. Neudörfl J. Hörauf A. Specht S. Raabe A. J. Med. Chem.  2009,  52:  3420 
  • 2b Kumar V. Mahajan A. Chibale K. Bioorg. Med. Chem.  2009,  17:  2236 
  • 2c O’Neill PM. Posner GH. J. Med. Chem.  2004,  47:  2945 
  • 2d Zhou WS. Xu XX. Acc. Chem. Res.  1994,  27:  211 
  • 2e Robert A. Dechy-Cabaret O. Cazelles J. Meunier B. Acc. Chem. Res.  2002,  35:  167 
  • 2f Meunier B. Acc. Chem. Res.  2008,  41:  69 
  • 3a Efferth T. Romero MR. Wolf DG. Marin JJG. Marschall M. Clin. Infect. Dis.  2008,  47:  804 
  • 3b Efferth T. Curr. Drug Targets  2006,  7:  407 
  • 4 Maude RJ. Pontavornpinyo W. Saralamba S. Aguas R. Yeung S. Dondorp AM. Day NPJ. White NJ. White LJ. Malaria J.  2009,  8:  31 
  • 5a Tang Y. Dong Y. Vennerstrom JL. Med. Res. Rev.  2004,  24:  425 
  • 5b Ryden A.-M. Kayser O. Top. Heterocycl. Chem.  2007,  9:  1 
  • 6 Bartoschek A. El-Idreesy TT. Griesbeck AG. Höinck L.-O. Lex J. Miara C. Neudörfl JM. Synthesis  2005,  2433 
  • 7 Griesbeck AG. El-Idreesy TT. Höinck L.-O. Lex J. Brun R. Bioorg. Med. Chem. Lett.  2005,  15:  595 
  • 8a Vennerstrom JL. Arbe-Barnes S. Brun R. Charman SA. Chiu FCK. Chollet J. Dong YX. Dorn A. Hunziker D. Matile H. McIntosh K. Padmanilayam M. Tomas JS. Scheurer C. Scorneaux B. Tang YQ. Urwyler H. Wittlin S. Charman WN. Nature (London)  2004,  430:  900 
  • 8b Ellis GL. Amewu R. Sabbani S. Stocks PA. Shone A. Stanford D. Gibbons P. Davies J. Vivas L. Charnaud S. Bongard E. Hall C. Rimmer K. Lozanom S. Jesús M. Gargallo D. Ward SA. O’Neill PM. J. Med. Chem.  2008,  51:  2170 
  • 9a Miyazaki A. Tsuda Y. Fukushima S. Yokoi T. Vántus T. Bökönyi G. Szabó E. Horváth A. Kéri G. Okada Y. J. Med. Chem.  2008,  51:  5121 
  • 9b Furber M. Alcaraz L. Bent JE. Beyerbach A. Bowers K. Braddock M. Caffrey MV. Cladingboel D. Collington J. Donald DK. Fagura M. Ince F. Kinchin EC. Laurent C. Lawson M. Luker TJ. Mortimore MMP. Pimm AD. Riley RJ. Roberts N. Robertson M. Theaker J. Thorne PV. Weaver R. Webborn P. Willis P. J. Med. Chem.  2007,  50:  5882 
  • 9c Singh C. Kanchan R. Sharma U. Puri SK. J. Med. Chem.  2007,  50:  521 
  • 10a Cady SD. Wang J. Wu Y. DeGrado WF. Hong M. J. Am. Chem. Soc.  2011,  133:  4274 
  • 10b Ribic R. Kovacevic M. Petrovic-Perokovic V. Gruic-Sovulj I. Rapic V. Tomic S. Croatica Chem. Acta  2010,  83:  421 
  • 10c Basaric N. Molcanov M. Kojic-Prodic B. Mlinaric-Majerski K. Tetrahedron  2007,  63:  7985 
  • 11 Echeverría J. Aullón G. Danovich D. Shaik S. Alvarez S. Nature Chem.  2011,  3:  323 
  • 12 Jefford CW. Currie J. Richardson GD. Rossier J.-C. Helv. Chim. Acta  1991,  74:  1239 
  • 14 Griesbeck AG. El-Idreesy TT. Bartoschek A. Adv. Synth. Catal.  2004,  346:  245 
  • 17 Adam W. Staab E. Tetrahedron Lett.  1988,  29:  531 
  • 18 Vassilikogiannakis G. Stratakis M. Orfanopoulos M. Foote CS. J. Org. Chem.  1999,  64:  4130 
  • 20 Singh S. Puri SK. Singh SK. Srivastava R. Gupta RC. Pandey VC. J. Biol. Chem.  1997,  272:  13506 
13

Typical Procedure for the Synthesis of Compound 7 (Following Method B)
Under a slight stream of argon, lithium foil (80 mg, 9.2 mmol) was added in small pieces to dry THF (10 mL) and stirred vigorously for 2 h. To this suspension, a mixture of 2-bromo-adamantane (500 mg, 2.3 mmol) and 3-methyl-crotonic aldehyde (280 µL, 2.9 mmol) in dry THF (10 mL) were added during 15 min at 0 ˚C. After 30 min stirring by 0 ˚C and warming to r.t., the solution was quenched with sat. aq NaHCO3, extracted with Et2O (3 × 20 mL), washed with brine, and dried with Na2SO4. After solvent evaporation the product was purified by column chromatography (cyclohexane-EtOAc = 9:1). Compound 7 was obtained as viscous colorless oil in 59% yield (296 mg).
¹H NMR (300 MHz, CDCl3): δ = 1.40-1.90 (m, 15 H, adamantyl), 1.74 (d, 6 H, J = 0.78 Hz), 2.17 (s, 1 H), 4.58 (m, 1 H, J = 3.15, 9.42 Hz), 5.10 (dd, J = 1.29, 9.24 Hz) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 18.4, 25.8, 22.7-50.4 (10 C adamantyl), 68.2, 127.8, 135.7 ppm.

15

Compound 9a
Colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 1.35 (s, 3 H), 1.51 (s, 3 H), 1.75 (s, 3 H), 1.45-2.20 (m, 15 H, adamantyl), 3.57 (d, 1 H, J = 9.7 Hz), 4.51 (d, 1 H, J = 9.7 Hz), 5.11 (m, 1 H), 5.19 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 19.9, 20.5, 25.7, 28.0-39.6 (10 C, adamantyl), 75.9, 84.7, 102.0, 118.8, 141.4.
Compound 10a
Colorless oil. IR (NaCl): νmax = 2906, 2852, 1722, 1714, 1702, 1699, 1487, 1470, 1453, 1371, 1259, 1234, 1208, 1168, 1098, 1046, 1025 cm. ¹H NMR (300 MHz, CDCl3): δ = 1.38 (s, 3 H), 1.66 (s, 3 H), 1.78 (s, 3 H), 1.45-2.20 (m, 15 H, adamantyl), 3.16 (dd, 1 H, J = 8.2, 9.1 Hz), 4.28 (d, 1 H, J = 9.1 Hz), 5.04 (m, 1 H), 5.14 (m, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 19.9, 20.3, 26.0, 25.9-45.4 (10 C, adamantyl), 70.1, 89.1, 102.8, 117.8, 140.3 ppm. Both compounds were isolated prior to purification as 5:1 trans/cis diastereoisomers.

16

Compound 9d
Colorless solid. ¹H NMR (300 MHz, CDCl3): δ = 1.83 (s, 3 H), 1.38-2.18 (m, 30 H, adamantyl), 3.57 (d, 1 H, J = 9.8 Hz), 4.52 (d, 1 H, J = 9.8 Hz), 5.09 (m, 1 H), 5.17 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 20.0, 26.9-38.3 (15 separated signals, adamantyl), 74.6, 84.6, 104.2, 118.9, 141.2 ppm.

19

Griesbeck, A. G.; Schlundt, V.; Specht, S.; Hörauf, A. unpublished results.