Synlett 2011(16): 2433-2434  
DOI: 10.1055/s-0030-1261234
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Polymer-Supported Hypervalent Iodine as Green Oxidant in Organic Synthesis

Mosadegh Keshavarz*
Chemistry Department, Shahid Chamran University, Ahvaz 61357-4-3169, Iran
e-Mail: m-keshavarz@scu.ac.ir;
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. September 2011 (online)

Introduction

2-Iodoxy benzoic acid (IBX) and Dess-Martin periodin­ane (DMP, Scheme  [¹] ) have been extensively employed in organic synthesis as mild and highly selective reagents for the oxidation of alcohols to carbonyl compounds as well as for a variety of other synthetically useful oxidative transformations. However, IBX and DMP are not perfect with respect to the principles of green chemistry since they are normally used as non-recyclable, stoichiometric reagents in non-recyclable organic solvents, which have potentially damaging environmental effects. [¹] [²] Reactions of monomeric hypervalent iodine reagents with organic substrates lead to the respective iodoarenes as byproducts, which in general are not recoverable from a reaction mixture. The discovery of recyclable reagents and catalytic systems based on the iodine redox chemistry has initiated a major surge of research activity and added a new dimension to the field of hypervalent iodine chemistry. Polymer-supported modifications of hypervalent iodine reagents retain the useful reactivity of their monomeric analogues with the added advantage of being readily recyclable and reusable. Numerous new organoiodine(V) reagents have recently been developed, and it is anticipated that these safe and efficient derivatives and analogues of IBX will find widespread synthetic application in the future.

Scheme 1 Preparation of IBX and DMP

    References

  • 1 Anastas PT. Warner JC. Green Chemistry: Theory and Practice   Oxford University Press Inc.; New York: 1998. 
  • 2a Mülbaier M. Giannis A. Angew. Chem. Int. Ed.  2001,  40:  4393 
  • 2b Sorg G. Mengei A. Jung G. Rademann J. Angew. Chem. Int. Ed.  2001,  40:  4395 
  • 2c Lei ZQ. Ma HC. Zhang Z. Yang YX. React. Funct. Polym.  2006,  66:  840 
  • 2d Lei Z. Denecker C. Jegasothy S. Sherrington DC. Slater NKH. Sutherland AJ. Tetrahedron Lett.  2003,  44:  1635 
  • 2e Bromberg L. Zhang H. Hatton TA. Chem. Mater.  2008,  20:  2001 
  • 3 Jang HS. Chung WJ. Lee YS. Tetrahedron Lett.  2007,  48:  3731 
  • 4 Kumar A. Maurya RA. Ahmad P. J. Comb. Chem.  2009,  11:  198 
  • 5 Bernini R. Mincione E. Barontini M. Crisante F. Fabrizi G. Tetrahedron Lett.  2009,  50:  1307 
  • 6 Chen JM. Zeng XM. Middleton K. Zhdankin VV. Tetrahedron Lett.  2011,  50:  1952 
  • 7 Qian W. Jin E. Bao W. Zhang Y. Angew. Chem. Int. Ed.  2005,  44:  952 
  • 8 Tesevic V. Gladysz JA. J. Org. Chem.  2006,  71:  7433