ABSTRACT
Brain injury continues to be a leading cause of mortality and morbidity in patients resuscitated after cardiac arrest. During periods of hypoxia and ischemia, numerous mechanisms contribute to the initial and secondary injury of the brain. Though many drugs and therapies have been evaluated for neuroprotection, only therapeutic hypothermia has been proven to be effective. Accurate prognostication after cardiac arrest is essential, and can be achieved with careful neurologic examination and several ancillary tests utilizing neurophysiology, neuroimaging, and biochemistry. Practice guidelines are now available for prognostication and postresuscitation care, with emphasis on improving survival and quality of life. Also reviewed are a wide spectrum of postarrest neurologic complications and their targeted treatments.
KEYWORDS
Cardiac arrest - anoxic - hypoxic - ischemic - hypoxic-ischemic - encephalopathy
REFERENCES
1
Geocadin R G, Koenig M A, Jia X, Stevens R D, Peberdy M A.
Management of brain injury after resuscitation from cardiac arrest.
Neurol Clin.
2008;
26
(2)
487-506, ix
ix
2
Zheng Z J, Croft J B, Giles W H, Mensah G A.
Sudden cardiac death in the United States, 1989 to 1998.
Circulation.
2001;
104
(18)
2158-2163
3
Geocadin R G, Buitrago M M, Torbey M T, Chandra-Strobos N, Williams M A, Kaplan P W.
Neurologic prognosis and withdrawal of life support after resuscitation from cardiac arrest.
Neurology.
2006;
67
(1)
105-108
4
Neumar R W, Nolan J P, Adrie C et al..
Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, Interamerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and The Stroke Council.
Circulation.
2008;
118
(23)
2452-2483
5
Hypothermia after Cardiac Arrest Study Group .
Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.
N Engl J Med.
2002;
346
(8)
549-556
6
Bernard S A, Gray T W, Buist M D et al..
Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.
N Engl J Med.
2002;
346
(8)
557-563
7
Schiff N D, Giacino J T, Kalmar K et al..
Behavioural improvements with thalamic stimulation after severe traumatic brain injury.
Nature.
2007;
448
(7153)
600-603
8
Peberdy M A, Callaway C W, Neumar R W et al..
Part 9: Post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
Circulation.
2010;
122
(18, Suppl 3)
S768-S786
9
Wagner IV S R, Lanier W L.
Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats.
Anesthesiology.
1994;
81
(6)
1516-1526
10
Hammer M D, Krieger D W.
Hypothermia for acute ischemic stroke: not just another neuroprotectant.
Neurologist.
2003;
9
(6)
280-289
11
Obrenovitch T P, Garofalo O, Harris R J et al..
Brain tissue concentrations of ATP, phosphocreatine, lactate, and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion.
J Cereb Blood Flow Metab.
1988;
8
(6)
866-874
12
Lee J M, Grabb M C, Zipfel G J, Choi D W.
Brain tissue responses to ischemia.
J Clin Invest.
2000;
106
(6)
723-731
13
Bright R, Mochly-Rosen D.
The role of protein kinase C in cerebral ischemic and reperfusion injury.
Stroke.
2005;
36
(12)
2781-2790
14
Jean W C, Spellman S R, Nussbaum E S, Low W C.
Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon.
Neurosurgery.
1998;
43
(6)
1382-1396
discussion 1396-1397
15
Hossmann K A.
Ischemia-mediated neuronal injury.
Resuscitation.
1993;
26
(3)
225-235
16
Ames III A, Wright R L, Kowada M, Thurston J M, Majno G.
Cerebral ischemia. II. The no-reflow phenomenon.
Am J Pathol.
1968;
52
(2)
437-453
17
Blomqvist P, Wieloch T.
Ischemic brain damage in rats following cardiac arrest using a long-term recovery model.
J Cereb Blood Flow Metab.
1985;
5
(3)
420-431
18
Smith M L, Auer R N, Siesjö B K.
The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia.
Acta Neuropathol.
1984;
64
(4)
319-332
19
Takemoto O, Tomimoto H, Yanagihara T.
Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils.
Stroke.
1995;
26
(9)
1639-1648
20 Plum M DF, Posner MDJB. Diagnosis of Stupor and Coma. Philadelphia: F.A. Davis Company; 1976
21
Berek K, Jeschow M, Aichner F.
The prognostication of cerebral hypoxia after out-of-hospital cardiac arrest in adults.
Eur Neurol.
1997;
37
(3)
135-145
22
Jennett B, Adams J H, Murray L S, Graham D I.
Neuropathology in vegetative and severely disabled patients after head injury.
Neurology.
2001;
56
(4)
486-490
23 Quality Standards Subcommittee of the American Academy of Neurology .Assessment and management of patients in the persistent vegetative state: AAN Practice Guidelines. St. Paul, MN: American Academy of Neurology; 1995
24
Giacino J T, Ashwal S, Childs N et al..
The minimally conscious state: definition and diagnostic criteria.
Neurology.
2002;
58
(3)
349-353
25
Snyder B D, Hauser W A, Loewenson R B, Leppik I E, Ramirez-Lassepas M, Gumnit R J.
Neurologic prognosis after cardiopulmonary arrest: III. Seizure activity.
Neurology.
1980;
30
(12)
1292-1297
26
Lu-Emerson C, Khot S.
Neurological sequelae of hypoxic-ischemic brain injury.
NeuroRehabilitation.
2010;
26
(1)
35-45
27
Wijdicks E F, Hijdra A, Young G B, Bassetti C L, Wiebe S. Quality Standards Subcommittee of the American Academy of Neurology .
Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.
Neurology.
2006;
67
(2)
203-210
28
Young G B, Gilbert J J, Zochodne D W.
The significance of myoclonic status epilepticus in postanoxic coma.
Neurology.
1990;
40
(12)
1843-1848
29
Wijdicks E F, Parisi J E, Sharbrough F W.
Prognostic value of myoclonus status in comatose survivors of cardiac arrest.
Ann Neurol.
1994;
35
(2)
239-243
30
Lance J W, Adams R D.
The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy.
Brain.
1963;
86
111-136
31
Khot S, Tirschwell D L.
Long-term neurological complications after hypoxic-ischemic encephalopathy.
Semin Neurol.
2006;
26
(4)
422-431
32
Diamond A L, Callison R C, Shokri J, Cruz-Flores S, Kinsella L J.
Paroxysmal sympathetic storm.
Neurocrit Care.
2005;
2
(3)
288-291
33
Hawker K, Lang A E.
Hypoxic-ischemic damage of the basal ganglia. Case reports and a review of the literature.
Mov Disord.
1990;
5
(3)
219-224
34
Bhatt M H, Obeso J A, Marsden C D.
Time course of postanoxic akinetic-rigid and dystonic syndromes.
Neurology.
1993;
43
(2)
314-317
35
Peskine A, Rosso C, Picq C, Caron E, Pradat-Diehl P.
Neurological sequelae after cerebral anoxia.
Brain Inj.
2010;
24
(5)
755-761
36
Cronberg T, Lilja G, Rundgren M, Friberg H, Widner H.
Long-term neurological outcome after cardiac arrest and therapeutic hypothermia.
Resuscitation.
2009;
80
(10)
1119-1123
37
Roine R O, Kajaste S, Kaste M.
Neuropsychological sequelae of cardiac arrest.
JAMA.
1993;
269
(2)
237-242
38
Sasson C, Rogers M A, Dahl J, Kellermann A L.
Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis.
Circ Cardiovasc Qual Outcomes.
2010;
3
(1)
63-81
39
Nichol G, Thomas E, Callaway C W Resuscitation Outcomes Consortium Investigators et al.
Regional variation in out-of-hospital cardiac arrest incidence and outcome.
JAMA.
2008;
300
(12)
1423-1431
40
Saklayen M, Liss H, Markert R.
In-hospital cardiopulmonary resuscitation. Survival in 1 hospital and literature review.
Medicine (Baltimore).
1995;
74
(4)
163-175
41
Young G B.
Clinical practice. Neurologic prognosis after cardiac arrest.
N Engl J Med.
2009;
361
(6)
605-611
42
Levy D E, Caronna J J, Singer B H, Lapinski R H, Frydman H, Plum F.
Predicting outcome from hypoxic-ischemic coma.
JAMA.
1985;
253
(10)
1420-1426
43
Zandbergen E G, Hijdra A, Koelman J H PROPAC Study Group et al.
Prediction of poor outcome within the first 3 days of postanoxic coma.
Neurology.
2006;
66
(1)
62-68
44
Al Thenayan E, Savard M, Sharpe M, Norton L, Young B.
Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest.
Neurology.
2008;
71
(19)
1535-1537
45
Robinson L R, Micklesen P J, Tirschwell D L, Lew H L.
Predictive value of somatosensory evoked potentials for awakening from coma.
Crit Care Med.
2003;
31
(3)
960-967
46
Lee Y C, Phan T G, Jolley D J, Castley H C, Ingram D A, Reutens D C.
Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: a meta-analysis.
Neurology.
2010;
74
(7)
572-580
47
Madl C, Kramer L, Domanovits H et al..
Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment.
Crit Care Med.
2000;
28
(3)
721-726
48
Zandbergen E G, Koelman J H, de Haan R J, Hijdra A. PROPAC-Study Group .
SSEPs and prognosis in postanoxic coma: only short or also long latency responses?.
Neurology.
2006;
67
(4)
583-586
49
Tiainen M, Kovala T T, Takkunen O S, Roine R O.
Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia.
Crit Care Med.
2005;
33
(8)
1736-1740
50
Guérit J M, de Tourtchaninoff M, Soveges L, Mahieu P.
The prognostic value of three-modality evoked potentials (TMEPs) in anoxic and traumatic comas.
Neurophysiol Clin.
1993;
23
(2-3)
209-226
51
Chen R, Bolton C F, Young B.
Prediction of outcome in patients with anoxic coma: a clinical and electrophysiologic study.
Crit Care Med.
1996;
24
(4)
672-678
52
Young G B, Kreeft J H, McLachlan R S, Demelo J.
EEG and clinical associations with mortality in comatose patients in a general intensive care unit.
J Clin Neurophysiol.
1999;
16
(4)
354-360
53
Rossetti A O, Oddo M, Logroscino G, Kaplan P W.
Prognostication after cardiac arrest and hypothermia: a prospective study.
Ann Neurol.
2010;
67
(3)
301-307
54
Young G B.
The EEG in coma.
J Clin Neurophysiol.
2000;
17
(5)
473-485
55
Geraghty M C, Torbey M T.
Neuroimaging and serologic markers of neurologic injury after cardiac arrest.
Neurol Clin.
2006;
24
(1)
107-121, vii vii
56
Torbey M T, Selim M, Knorr J, Bigelow C, Recht L.
Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest.
Stroke.
2000;
31
(9)
2163-2167
57
Wijman C A, Mlynash M, Caulfield A F et al..
Prognostic value of brain diffusion-weighted imaging after cardiac arrest.
Ann Neurol.
2009;
65
(4)
394-402
58
Berek K, Lechleitner P, Luef G et al..
Early determination of neurological outcome after prehospital cardiopulmonary resuscitation.
Stroke.
1995;
26
(4)
543-549
59
DeVolder A G, Goffinet A M, Bol A, Michel C, de Barsy T, Laterre C.
Brain glucose metabolism in postanoxic syndrome. Positron emission tomographic study.
Arch Neurol.
1990;
47
(2)
197-204
60
Schaafsma A, de Jong B M, Bams J L, Haaxma-Reiche H, Pruim J, Zijlstra J G.
Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy.
J Neurol Sci.
2003;
210
(1-2)
23-30
61
Pfeifer R, Börner A, Krack A, Sigusch H H, Surber R, Figulla H R.
Outcome after cardiac arrest: predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale.
Resuscitation.
2005;
65
(1)
49-55
62
Fogel W, Krieger D, Veith M et al..
Serum neuron-specific enolase as early predictor of outcome after cardiac arrest.
Crit Care Med.
1997;
25
(7)
1133-1138
63
Martens P, Raabe A, Johnsson P.
Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia.
Stroke.
1998;
29
(11)
2363-2366
64
Wong K C.
Physiology and pharmacology of hypothermia.
West J Med.
1983;
138
(2)
227-232
65
Erecinska M, Thoresen M, Silver I A.
Effects of hypothermia on energy metabolism in mammalian central nervous system.
J Cereb Blood Flow Metab.
2003;
23
(5)
513-530
66
Sick T J, Xu G, Pérez-Pinzón M A.
Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat.
Stroke.
1999;
30
(11)
2416-2421
discussion 2422
67
Busto R, Globus M Y, Dietrich W D, Martinez E, Valdés I, Ginsberg M D.
Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.
Stroke.
1989;
20
(7)
904-910
68
Harada K, Maekawa T, Tsuruta R et al..
Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.
J Neurosci Res.
2002;
67
(5)
664-669
69
Globus M Y, Alonso O, Dietrich W D, Busto R, Ginsberg M D.
Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia.
J Neurochem.
1995;
65
(4)
1704-1711
70
Zheng Z, Yenari M A.
Post-ischemic inflammation: molecular mechanisms and therapeutic implications.
Neurol Res.
2004;
26
(8)
884-892
71
Fukuda H, Tomimatsu T, Watanabe N et al..
Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia.
Brain Res.
2001;
910
(1-2)
187-191
72
Niwa M, Hara A, Iwai T et al..
Relationship between magnitude of hypothermia during ischemia and preventive effect against post-ischemic DNA fragmentation in the gerbil hippocampus.
Brain Res.
1998;
794
(2)
338-342
73
Hachimi-Idrissi S, Corne L, Ebinger G, Michotte Y, Huyghens L.
Mild hypothermia induced by a helmet device: a clinical feasibility study.
Resuscitation.
2001;
51
(3)
275-281
74
Holzer M, Bernard S A, Hachimi-Idrissi S, Roine R O, Sterz F, Müllner M. Collaborative Group on Induced Hypothermia for Neuroprotection After Cardiac Arrest .
Hypothermia for neuroprotection after cardiac arrest: systematic review and individual patient data meta-analysis.
Crit Care Med.
2005;
33
(2)
414-418
75
Abella B S, Rhee J W, Huang K N, Vanden Hoek T L, Becker L B.
Induced hypothermia is underused after resuscitation from cardiac arrest: a current practice survey.
Resuscitation.
2005;
64
(2)
181-186
76
Merchant R M, Soar J, Skrifvars M B et al..
Therapeutic hypothermia utilization among physicians after resuscitation from cardiac arrest.
Crit Care Med.
2006;
34
(7)
1935-1940
77
Laver S R, Padkin A, Atalla A, Nolan J P.
Therapeutic hypothermia after cardiac arrest: a survey of practice in intensive care units in the United Kingdom.
Anaesthesia.
2006;
61
(9)
873-877
78
Wolfrum S, Radke P W, Pischon T, Willich S N, Schunkert H, Kurowski V.
Mild therapeutic hypothermia after cardiac arrest - a nationwide survey on the implementation of the ILCOR guidelines in German intensive care units.
Resuscitation.
2007;
72
(2)
207-213
79
Caviness J N, Brown P.
Myoclonus: current concepts and recent advances.
Lancet Neurol.
2004;
3
(10)
598-607
80
Frucht S, Fahn S.
The clinical spectrum of posthypoxic myoclonus.
Mov Disord.
2000;
15
(Suppl 1)
2-7
81
Datta S, Hart G K, Opdam H, Gutteridge G, Archer J.
Post-hypoxic myoclonic status: the prognosis is not always hopeless.
Crit Care Resusc.
2009;
11
(1)
39-41
82
Thömke F, Weilemann S L.
Poor prognosis despite successful treatment of postanoxic generalized myoclonus.
Neurology.
2010;
74
(17)
1392-1394
83
Krauss G L, Bergin A, Kramer R E, Cho Y W, Reich S G.
Suppression of post-hypoxic and post-encephalitic myoclonus with levetiracetam.
Neurology.
2001;
56
(3)
411-412
84
Baguley I J.
Autonomic complications following central nervous system injury.
Semin Neurol.
2008;
28
(5)
716-725
85
Morris H R, Howard R S, Brown P.
Early myoclonic status and outcome after cardiorespiratory arrest.
J Neurol Neurosurg Psychiatry.
1998;
64
(2)
267-268
86
Arnoldus E P, Lammers G J.
Postanoxic coma: good recovery despite myoclonus status.
Ann Neurol.
1995;
38
(4)
697-698
87
Harper S J, Wilkes R G.
Posthypoxic myoclonus (the Lance-Adams syndrome) in the intensive care unit.
Anaesthesia.
1991;
46
(3)
199-201
88
Fugate J E, Wijdicks E F, Mandrekar J et al..
Predictors of neurologic outcome in hypothermia after cardiac arrest.
Ann Neurol.
2010;
68
(6)
907-914
Romergryko G GeocadinM.D.
Director, Neurosciences Critical Care Division; Department of Neurology, Department of Anesthesiology and Critical Care Medicine
Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287
eMail: rgeocad1@jhmi.edu