Planta Med 2012; 78(4): 393-399
DOI: 10.1055/s-0031-1280404
Biological Screening
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Inhibitory Activity of α-Amylase and α-Glucosidase by Plant Extracts from the Brazilian Cerrado

Paula Monteiro de Souza1 , Paloma Michelle de Sales1 , Luiz Alberto Simeoni1 , Elton Clementino Silva2 , Dâmaris Silveira1 , 2 , Pérola de Oliveira Magalhães1
  • 1Department of Pharmaceutical Sciences, School of Health Sciences, Campus Darcy Ribeiro, University of Brasília, Brasília, Brazil
  • 2Department of Pharmacy, Campus Ceilândia, University of Brasília, Brasília, Brazil
Further Information

Publication History

received June 7, 2011 revised Nov. 8, 2011

accepted Nov. 10, 2011

Publication Date:
01 December 2011 (online)

Abstract

Diabetes mellitus is the most common disease in the world. One therapeutic approach for treating diabetes is inhibition of α-amylase and α-glucosidase activities to reduce postprandial blood glucose levels. In vitro tests showed that several plant extracts from Brazilian cerrado species can inhibit the activity of α-amylase and α-glucosidase. The extracts of Eugenia dysenterica, Stryphnodendron adstringens, Pouteria caimito, Pouteria ramiflora, and Pouteria torta showed strong α-amylase and α-glucosidase inhibitory activity. Eugenia dysenterica, P. caimito, P. ramiflora, and P. torta aqueous extracts exerted the highest activity against α-amylase (IC50 values of 14.93, 13.6, 7.08, and 5.67 µg/mL, respectively) and α-glucosidase (IC50 values of 0.46, 2.58, 0.35, and 0.22 µg/mL, respectively). Stryphnodendron adstringens ethanol extract also exhibited inhibitory activity against both enzymes (IC50 1.86 µg/mL against α-amylase and 0.61 µg/mL against α-glucosidase). The results suggest that the activity of these cerrado plants on α-amylase and α-glucosidase represents a potential tool for development of new strategies for treatment of diabetes.

References

  • 1 Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.  Diabet Care. 2004;  27 1047-1053
  • 2 Ali H, Houghton P J, Soumyanath A. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.  J Ethnopharmacol. 2006;  107 449-455
  • 3 Bhandari M R, Jong-Anurakkun N, Hong G, Kawabata J. [alpha]-Glucosidase and [alpha]-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.).  Food Chem. 2008;  106 247-252
  • 4 Funke I, Melzing M F. Traditionally used plants in diabetes therapy – phytotherapeutics as inhibitors of a-amylase activity.  Rev Bras Farmacogn. 2006;  16 1-5
  • 5 Göke B, Herrmann-Rinke C. The evolving role of alpha-glucosidase inhibitors.  Diabetes Metab Rev. 1998;  14 S31-S38
  • 6 Inzucchi S E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review.  JAMA. 2002;  287 360-372
  • 7 Lebovitz H E. alpha-Glucosidase inhibitors.  Endocrinol Metab Clin North Am. 1997;  26 539-551
  • 8 Loizzo M R, Saab A M, Tundis R, Menichini F, Bonesi M, Piccolo V, Statti G A, de Cindio B, Houghton P J. In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes.  J Ethnopharmacol. 2008;  119 109-116
  • 9 Whitcomb D C, Lowe M E. Human pancreatic digestive enzymes.  Dig Dis Sci. 2007;  52 1-17
  • 10 Bhat M, Zinjarde S S, Bhargava S Y, Kumar A R, Joshi B N. Antidiabetic Indian plants: a good source of potent amylase inhibitors.  Evid Based Complement Alternat Med. 2008;  , published online May 2, 2011; DOI: 10.1093/ecam/nen040
  • 11 Cheng A Y, Fantus I G. Oral antihyperglycemic therapy for type 2 diabetes mellitus.  CMAJ. 2005;  172 213-226
  • 12 Gyemant G, Kandra L, Nagy V, Somsak L. Inhibition of human salivary alpha-amylase by glucopyranosylidene-spiro-thiohydantoin.  Biochem Biophys Res Commun. 2003;  312 334-339
  • 13 Grover J K, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential.  J Ethnopharmacol. 2002;  81 81-100
  • 14 Apostolidis E, Kwon Y I, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension.  Inn Food Sci Emererg Technol. 2007;  8 46-54
  • 15 Caramori S S, Lima C S, Fernandes K F. Biochemical characterization of selected plant species from Brazilian savannas.  Braz Arch Biol Technol. 2004;  47 253-259
  • 16 Boonclarm D, Sornwatana T, Arthan D, Kongsaeree P, Svasti J. beta-Glucosidase catalyzing specific hydrolysis of an iridoid beta-glucoside from Plumeria obtusa.  Acta Biochim Biophys Sin (Shanghai). 2006;  38 563-570
  • 17 Rebecca M A, Ishii-Iwamoto E L, Grespan R, Cuman R K, Caparroz-Assef S M, Mello J C, Bersani-Amado C A. Toxicological studies on Stryphnodendron adstringens.  J Ethnopharmacol. 2002;  83 101-104
  • 18 Silva C A M, Simeoni L A, Silveira D. Genus Pouteria: chemistry and biological activity.  Rev Bras Farmacogn. 2009;  19 501-509
  • 19 Gaspi F O, Foglio M A, Carvalho J E, Moreno R A. Pharmacological activities investigation of crude extracts and fractions from Qualea grandiflora Mart.  J Ethnopharmacol. 2006;  107 19-24
  • 20 Hiruma-Lima C A, Santos L C, Kushima H, Pellizzon C H, Silveira G G, Vasconcelos P C, Vilegas W, Brito A R. Qualea grandiflora, a Brazilian “Cerrado” medicinal plant presents an important antiulcer activity.  J Ethnopharmacol. 2006;  104 207-214
  • 21 Cole R A, Haber W A, Setzer W N. Chemical composition of essential oils of seven species of Eugenia from Monteverde, Costa Rica.  Biochem Syst Ecol. 2007;  35 877-886
  • 22 Ferreira H C, Serra C P, Endringer D C, Lemos V S, Braga F C, Cortes S F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery.  Phytomedicine. 2007;  14 473-478
  • 23 Wang L, Gong T, Chen R Y. Two new prenylflavonoids from Morus nigra L.  Chin Chem Lett. 2009;  20 1469-1471
  • 24 Napolitano D R, Mineo J R, de Souza M A, de Paula J E, Espindola L S, Espindola F S. Down-modulation of nitric oxide production in murine macrophages treated with crude plant extracts from the Brazilian Cerrado.  J Ethnopharmacol. 2005;  99 37-41
  • 25 Shu Y Z. Recent natural products based drug development: a pharmaceutical industry perspective.  J Nat Prod. 1998;  61 1053-1071
  • 26 Houghton P J, Howes M J, Lee C C, Steventon G. Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant.  J Ethnopharmacol. 2007;  110 391-400
  • 27 Bernfeld P. Amylases α and β. In: Colowick S P, Kaplan N O, editors Methods in enzymology. San Diego: Academic Press, Inc.; 1955: 149-158
  • 28 Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar.  Anal Chem. 1959;  31 426-428
  • 29 Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, Placido J, Zito S W. Alpha-glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats.  Carbohydr Res. 2008;  343 1278-1281
  • 30 Gholamhoseinian A, Fallah H, Sharifi far F. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on alpha-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats.  Phytomedicine. 2009;  16 935-941
  • 31 Karthic K, Kirthiram K S, Sadasivam S, Thayumanavan B. Identification of α-amylase inhibitors from Syzygium cumini Linn seeds.  Indian J Exp Biol. 2008;  46 677-680
  • 32 Arai I, Amagaya S, Komatsu Y, Okada M, Hayashi T, Kasai M, Arisawa M, Momose Y. Improving effects of the extracts from Eugenia uniflora on hyperglycemia and hypertriglyceridemia in mice.  J Ethnopharmacol. 1999;  68 307-314
  • 33 Ogunwande I A, Olawore N O, Ekundayo O, Walker T M, Schmidt J M, Setzer W N. Studies on the essential oils composition, antibacterial and cytotoxicity of Eugenia uniflora L.  Int J Aromather. 2005;  15 147-152
  • 34 Bezerra J C, Silva I A, Ferreira H D, Ferri P H, Santos S C. Molluscicidal activity against Biomphalaria glabrata of Brazilian Cerrado medicinal plants.  Fitoterapia. 2002;  73 428-430
  • 35 Costa T R, Fernandes O F, Santos S C, Oliveira C M, Liao L M, Ferri P H, Paula J R, Ferreira H D, Sales B H, Silva Md R. Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil.  J Ethnopharmacol. 2000;  72 111-117
  • 36 Ali M S, Jahangir M, Hussan S S, Choudhary M I. Inhibition of alpha-glucosidase by oleanolic acid and its synthetic derivatives.  Phytochemistry. 2002;  60 295-299
  • 37 Kandra L, Gyémánt G, Zajácz A, Battab G. Inhibitory effects of tannin on human salivary α-amylase.  Biochem Biophys Res Commun. 2004;  319 1265-1271
  • 38 Macedo F M, Martins G T, Mendes C S O, Silva C M, Rodrigues C G, Oliveira D A. Determinação de compostos fenólicos totais em Barbatimão [Stryphnodendron adstringens (Mart) Coville].  Braz J Biosci. 2008;  5 1164-1165
  • 39 Gunawan-Puteri M D P T, Kawabata J. Novel [alpha]-glucosidase inhibitors from Macaranga tanarius leaves.  Food Chem. 2010;  123 384-389
  • 40 Lee S H, Park M H, Heo S J, Kang S M, Ko S C, Han J S, Jeon Y J. Dieckol isolated from Ecklonia cava inhibits alpha-glucosidase and alpha-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice.  Food Chem Toxicol. 2010;  48 2633-2637
  • 41 Zhou M L, Shao J R, Tang Y X. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle).  Biotechnol Appl Biochem. 2009;  52 313-323
  • 42 Jong-Anurakkun N, Bhandari M R, Kawabata J. [alpha]-Glucosidase inhibitors from Devil tree (Alstonia scholaris).  Food Chem. 2007;  103 1319-1323
  • 43 Rodriguez-Sanchez S, Hernandez-Hernandez O, Ruiz-Matute A I, Sanz M L. A derivatization procedure for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates by GC-MS in mulberry (Morus sp.).  Food Chem. 2011;  126 353-359
  • 44 Butt M S, Nazir A, Sultan M T, Schroën K. Morus alba L. nature's functional tonic.  Trends Food Sci Technol. 2008;  19 505-512
  • 45 Kim J W, Kim S U, Lee H S, Kim I, Ahn M Y, Ryu K S. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography.  J Chromatogr A. 2003;  1002 93-99
  • 46 Hughes A B, Rudge A J. Deoxynojirimycin: synthesis and biological activity.  Nat Prod Rep. 1994;  11 135-162

Paula Monteiro de Souza

Departamento de Farmácia
Faculdade de Ciências da Saúde
Universidade de Brasília

Campus Universitário Darcy Ribeiro

70919–970, Brasília, Distrito Federal

Brasil

Phone: + 55 61 92 36 40 20

Email: paulasouza22@yahoo.com.br