Abstract
Diabetes mellitus is the most common disease in the world. One therapeutic approach for treating diabetes is inhibition of α -amylase and α -glucosidase activities to reduce postprandial blood glucose levels. In vitro tests showed that several plant extracts from Brazilian cerrado species can inhibit the activity of α -amylase and α -glucosidase. The extracts of Eugenia dysenterica, Stryphnodendron adstringens, Pouteria caimito, Pouteria ramiflora , and Pouteria torta showed strong α -amylase and α -glucosidase inhibitory activity. Eugenia dysenterica, P. caimito, P. ramiflora , and P. torta aqueous extracts exerted the highest activity against α -amylase (IC50 values of 14.93, 13.6, 7.08, and 5.67 µg/mL, respectively) and α -glucosidase (IC50 values of 0.46, 2.58, 0.35, and 0.22 µg/mL, respectively). Stryphnodendron adstringens ethanol extract also exhibited inhibitory activity against both enzymes (IC50 1.86 µg/mL against α -amylase and 0.61 µg/mL against α -glucosidase). The results suggest that the activity of these cerrado plants on α -amylase and α -glucosidase represents a potential tool for development of new strategies for treatment of diabetes.
Key words
enzyme inhibition -
α -amylase -
α -glucosidase - cerrado - Brazilian savannah - diabetes
References
1
Wild S, Roglic G, Green A, Sicree R, King H.
Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
Diabet Care.
2004;
27
1047-1053
2
Ali H, Houghton P J, Soumyanath A.
alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus .
J Ethnopharmacol.
2006;
107
449-455
3
Bhandari M R, Jong-Anurakkun N, Hong G, Kawabata J.
[alpha]-Glucosidase and [alpha]-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata , Haw.).
Food Chem.
2008;
106
247-252
4
Funke I, Melzing M F.
Traditionally used plants in diabetes therapy – phytotherapeutics as inhibitors of a -amylase activity.
Rev Bras Farmacogn.
2006;
16
1-5
5
Göke B, Herrmann-Rinke C.
The evolving role of alpha-glucosidase inhibitors.
Diabetes Metab Rev.
1998;
14
S31-S38
6
Inzucchi S E.
Oral antihyperglycemic therapy for type 2 diabetes: scientific review.
JAMA.
2002;
287
360-372
7
Lebovitz H E.
alpha-Glucosidase inhibitors.
Endocrinol Metab Clin North Am.
1997;
26
539-551
8
Loizzo M R, Saab A M, Tundis R, Menichini F, Bonesi M, Piccolo V, Statti G A, de Cindio B, Houghton P J.
In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes.
J Ethnopharmacol.
2008;
119
109-116
9
Whitcomb D C, Lowe M E.
Human pancreatic digestive enzymes.
Dig Dis Sci.
2007;
52
1-17
10
Bhat M, Zinjarde S S, Bhargava S Y, Kumar A R, Joshi B N.
Antidiabetic Indian plants: a good source of potent amylase inhibitors.
Evid Based Complement Alternat Med.
2008;
, published online May 2, 2011;
DOI: 10.1093/ecam/nen040
11
Cheng A Y, Fantus I G.
Oral antihyperglycemic therapy for type 2 diabetes mellitus.
CMAJ.
2005;
172
213-226
12
Gyemant G, Kandra L, Nagy V, Somsak L.
Inhibition of human salivary alpha-amylase by glucopyranosylidene-spiro-thiohydantoin.
Biochem Biophys Res Commun.
2003;
312
334-339
13
Grover J K, Yadav S, Vats V.
Medicinal plants of India with anti-diabetic potential.
J Ethnopharmacol.
2002;
81
81-100
14
Apostolidis E, Kwon Y I, Shetty K.
Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension.
Inn Food Sci Emererg Technol.
2007;
8
46-54
15
Caramori S S, Lima C S, Fernandes K F.
Biochemical characterization of selected plant species from Brazilian savannas.
Braz Arch Biol Technol.
2004;
47
253-259
16
Boonclarm D, Sornwatana T, Arthan D, Kongsaeree P, Svasti J.
beta-Glucosidase catalyzing specific hydrolysis of an iridoid beta-glucoside from Plumeria obtusa .
Acta Biochim Biophys Sin (Shanghai).
2006;
38
563-570
17
Rebecca M A, Ishii-Iwamoto E L, Grespan R, Cuman R K, Caparroz-Assef S M, Mello J C, Bersani-Amado C A.
Toxicological studies on Stryphnodendron adstringens .
J Ethnopharmacol.
2002;
83
101-104
18
Silva C A M, Simeoni L A, Silveira D.
Genus Pouteria : chemistry and biological activity.
Rev Bras Farmacogn.
2009;
19
501-509
19
Gaspi F O, Foglio M A, Carvalho J E, Moreno R A.
Pharmacological activities investigation of crude extracts and fractions from Qualea grandiflora Mart.
J Ethnopharmacol.
2006;
107
19-24
20
Hiruma-Lima C A, Santos L C, Kushima H, Pellizzon C H, Silveira G G, Vasconcelos P C, Vilegas W, Brito A R.
Qualea grandiflora , a Brazilian “Cerrado” medicinal plant presents an important antiulcer activity.
J Ethnopharmacol.
2006;
104
207-214
21
Cole R A, Haber W A, Setzer W N.
Chemical composition of essential oils of seven species of Eugenia from Monteverde, Costa Rica.
Biochem Syst Ecol.
2007;
35
877-886
22
Ferreira H C, Serra C P, Endringer D C, Lemos V S, Braga F C, Cortes S F.
Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery.
Phytomedicine.
2007;
14
473-478
23
Wang L, Gong T, Chen R Y.
Two new prenylflavonoids from Morus nigra L.
Chin Chem Lett.
2009;
20
1469-1471
24
Napolitano D R, Mineo J R, de Souza M A, de Paula J E, Espindola L S, Espindola F S.
Down-modulation of nitric oxide production in murine macrophages treated with crude plant extracts from the Brazilian Cerrado.
J Ethnopharmacol.
2005;
99
37-41
25
Shu Y Z.
Recent natural products based drug development: a pharmaceutical industry perspective.
J Nat Prod.
1998;
61
1053-1071
26
Houghton P J, Howes M J, Lee C C, Steventon G.
Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant.
J Ethnopharmacol.
2007;
110
391-400
27 Bernfeld P. Amylases α and β. In: Colowick S P, Kaplan N O, editors Methods in enzymology. San Diego: Academic Press, Inc.; 1955: 149-158
28
Miller G L.
Use of dinitrosalicylic acid reagent for determination of reducing sugar.
Anal Chem.
1959;
31
426-428
29
Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, Placido J, Zito S W.
Alpha-glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats.
Carbohydr Res.
2008;
343
1278-1281
30
Gholamhoseinian A, Fallah H, Sharifi far F.
Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on alpha-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats.
Phytomedicine.
2009;
16
935-941
31
Karthic K, Kirthiram K S, Sadasivam S, Thayumanavan B.
Identification of α-amylase inhibitors from Syzygium cumini Linn seeds.
Indian J Exp Biol.
2008;
46
677-680
32
Arai I, Amagaya S, Komatsu Y, Okada M, Hayashi T, Kasai M, Arisawa M, Momose Y.
Improving effects of the extracts from Eugenia uniflora on hyperglycemia and hypertriglyceridemia in mice.
J Ethnopharmacol.
1999;
68
307-314
33
Ogunwande I A, Olawore N O, Ekundayo O, Walker T M, Schmidt J M, Setzer W N.
Studies on the essential oils composition, antibacterial and cytotoxicity of Eugenia uniflora L.
Int J Aromather.
2005;
15
147-152
34
Bezerra J C, Silva I A, Ferreira H D, Ferri P H, Santos S C.
Molluscicidal activity against Biomphalaria glabrata of Brazilian Cerrado medicinal plants.
Fitoterapia.
2002;
73
428-430
35
Costa T R, Fernandes O F, Santos S C, Oliveira C M, Liao L M, Ferri P H, Paula J R, Ferreira H D, Sales B H, Silva Md R.
Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil.
J Ethnopharmacol.
2000;
72
111-117
36
Ali M S, Jahangir M, Hussan S S, Choudhary M I.
Inhibition of alpha-glucosidase by oleanolic acid and its synthetic derivatives.
Phytochemistry.
2002;
60
295-299
37
Kandra L, Gyémánt G, Zajácz A, Battab G.
Inhibitory effects of tannin on human salivary α-amylase.
Biochem Biophys Res Commun.
2004;
319
1265-1271
38
Macedo F M, Martins G T, Mendes C S O, Silva C M, Rodrigues C G, Oliveira D A.
Determinação de compostos fenólicos totais em Barbatimão [Stryphnodendron adstringens (Mart) Coville].
Braz J Biosci.
2008;
5
1164-1165
39
Gunawan-Puteri M D P T, Kawabata J.
Novel [alpha]-glucosidase inhibitors from Macaranga tanarius leaves.
Food Chem.
2010;
123
384-389
40
Lee S H, Park M H, Heo S J, Kang S M, Ko S C, Han J S, Jeon Y J.
Dieckol isolated from Ecklonia cava inhibits alpha-glucosidase and alpha-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice.
Food Chem Toxicol.
2010;
48
2633-2637
41
Zhou M L, Shao J R, Tang Y X.
Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle).
Biotechnol Appl Biochem.
2009;
52
313-323
42
Jong-Anurakkun N, Bhandari M R, Kawabata J.
[alpha]-Glucosidase inhibitors from Devil tree (Alstonia scholaris ).
Food Chem.
2007;
103
1319-1323
43
Rodriguez-Sanchez S, Hernandez-Hernandez O, Ruiz-Matute A I, Sanz M L.
A derivatization procedure for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates by GC-MS in mulberry (Morus sp.).
Food Chem.
2011;
126
353-359
44
Butt M S, Nazir A, Sultan M T, Schroën K.
Morus alba L. nature's functional tonic.
Trends Food Sci Technol.
2008;
19
505-512
45
Kim J W, Kim S U, Lee H S, Kim I, Ahn M Y, Ryu K S.
Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography.
J Chromatogr A.
2003;
1002
93-99
46
Hughes A B, Rudge A J.
Deoxynojirimycin: synthesis and biological activity.
Nat Prod Rep.
1994;
11
135-162
Paula Monteiro de Souza
Departamento de Farmácia Faculdade de Ciências da Saúde Universidade de Brasília
Campus Universitário Darcy Ribeiro
70919–970, Brasília, Distrito Federal
Brasil
Telefon: + 55 61 92 36 40 20
eMail: paulasouza22@yahoo.com.br