RSS-Feed abonnieren
DOI: 10.1055/s-0031-1281755
© Georg Thieme Verlag KG Stuttgart · New York
Cholestasis and the Role of Basolateral Efflux Pumps
Cholestase und die Bedeutung der basolateralen Effluxpumpen der HepatozytenPublikationsverlauf
manuscript received: 18.8.2011
manuscript accepted: 2.9.2011
Publikationsdatum:
02. Dezember 2011 (online)

Zusammenfassung
Die entscheidende Triebkraft für den Gallefluss ist der ATP-abhängige Transport von Gallebestandteilen (Gallensäuren, reduziertes Glutathion, Bilirubinglucuronide u. a.) über die kanalikuläre Hepatozytenmembran in die Galle. Die funktionelle Charakterisierung, die Klonierung und die Lokalisation von Transportproteinen der Hepatozytenmembran haben entscheidend zum molekularen Verständnis von Gallefluss und intrahepatischer Cholestase beigetragen. Genetische Defekte in der menschlichen Leber und bei Ratten, Genausschaltungen bei Mäusen und die direkte Hemmung von Transportproteinen haben gezeigt, dass die Konjugatexportpumpe MRP2 (Multidrug resistance protein 2; ABCC2) und die Gallensalzexportpumpe BSEP (Bile salt export pump; ABCB11) den wichtigsten Beitrag zum Gallensäure-unabhängigen bzw. zum Gallensäure-abhängigen Gallefluss leisten. In der menschlichen Leber führen bestimmte genetische Varianten zum Verlust der Transportaktivität der Gallensalzexportpumpe BSEP und zur schweren intrahepatischen Cholestase. Effluxtransporter in der basolateralen Hepatozytenmembran, insbesondere MRP3 (Multidrug resistance protein 3; ABCC3) und MRP4 (Multidrug resistance protein 4; ABCC4), transportieren Substanzen vom Hepatozyten in das sinusoidale Blut. Diese Effluxtransporter wurden erst in den letzten Jahren identifiziert und lokalisiert. Sie kompensieren ein Missverhältnis zwischen der Aufnahme von Substanzen, z. B. Gallensäuren, über die sinusoidale Membran in die Hepatozyten und einer unzureichenden kanalikulären Sekretion bei der Cholestase. Aber auch unter physiologischen Bedingungen wird dieser basolaterale Efflux von Substanzen beobachtet und ermöglicht nicht nur eine spätere renale Ausscheidung, sondern auch eine Wiederaufnahme in benachbarte Hepatozyten entlang des Leberazinus.
Abstract
ATP-dependent transport of biliary constituents, such as bile acids, reduced glutathione, and bilirubin glucuronosides across the hepatocyte canalicular membrane into bile represents the decisive driving force for the formation of biliary fluid. Functional characterization, cloning, and localization of hepatocellular transporter proteins has provided a molecular understanding of the mechanisms underlying bile flow and intrahepatic cholestasis. Genetic variants in humans and genetic knockout in rodents, or transporter inhibition have indicated that both the conjugate export pump MRP2 (multidrug resistance protein 2; ABCC2) and the bile salt export pump BSEP (ABCB11) are major contributors to bile acid-independent and bile acid-dependent bile flow, respectively. In humans, genetic variants of BSEP, leading to an impaired transport activity or localization of the protein in the canalicular membrane, are associated with severe intrahepatic cholestasis. Efflux pumps of the basolateral hepatocyte membrane, particularly MRP3 (multidrug resistance protein 3; ABCC3) and MRP4 (multidrug resistance protein 4; ABCC4) pump substances from hepatocytes into sinusoidal blood. These efflux pumps have been recognized in recent years to play an important compensatory role in cholestasis and to contribute to the balance between uptake and efflux of substances during the vectorial transport from sinusoidal blood into bile. This sinusoidal efflux not only enables subsequent renal elimination, but also re-uptake of substances into neighboring and more centrally located hepatocytes in the sinusoid.
Schlüsselwörter
ATP-abhängiger Transport - basolaterale Hepatozytenmembran - Cholestase - Gallefluss - Gallensalz-Exportpumpe (BSEP; ABCB11) - Gallensäuren - intrahepatische Cholestase
Key words
ATP-dependent transport - basolateral hepatocyte membrane - cholestasis - bile flow - bile salt export pump (BSEP; ABCB11) - bile acids - intrahepatic cholestasis
References
- 1
Kitamura T, Jansen P, Hardenbrook C et al.
Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-)
rats with conjugated hyperbilirubinemia.
Proc Natl Acad Sci USA.
1990;
87
3557-3561
MissingFormLabel
- 2
Ishikawa T, Müller M, Klünemann C et al.
ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular
membrane. Role of the ATP-dependent transport system for glutathione S-conjugates.
J Biol Chem.
1990;
265
19 279-19 286
MissingFormLabel
- 3
Adachi Y, Kobayashi H, Kurumi Y et al.
ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles.
Hepatology.
1991;
14
655-659
MissingFormLabel
- 4
Müller M, Ishikawa T, Berger U et al.
ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane
mediated by a 110-kDa glycoprotein binding ATP and bile salt.
J Biol Chem.
1991;
266
18 920-18 926
MissingFormLabel
- 5
Nishida T, Gatmaitan Z, Che M et al.
Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport
system.
Proc Natl Acad Sci USA.
1991;
88
6590-6594
MissingFormLabel
- 6
Meier P J, Meier-Abt A, Barrett C et al.
Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma
membrane vesicles.
J Biol Chem.
1984;
259
10 614-10 622
MissingFormLabel
- 7
lnoue M, Kinne R, Tran T et al.
Taurocholate transport by rat liver canalicular membrane vesicles.
J Clin Invest.
1984;
73
659-663
MissingFormLabel
- 8
Keppler D, Arias I M.
Introduction: Transport across the hepatocyte canalicular membrane.
FASEB J.
1997;
11
15-18
MissingFormLabel
- 9 Keppler D. Multidrug Resistance Proteins (MRPs, ABCCs): Importance for Pathophysiology and Drug
Therapy. In: Fromm M F, Kim R B, (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 299-323
MissingFormLabel
- 10
Keppler D.
Uptake and efflux transporters for conjugates in human hepatocytes.
Methods Enzymol.
2005;
201
531-542
MissingFormLabel
- 11
Nies A T, Schwab M, Keppler D.
Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux
pumps in the elimination of drugs.
Expert Opin Drug Metab Toxicol.
2008;
4
545-568
MissingFormLabel
- 12 Stieger B. The Role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP) and of the Bile
Salt Export Pump (BSEP) in Physiology and Pathobiology of Bile Formation. In: (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 205-259
MissingFormLabel
- 13 König J. Uptake Transporters of the Human OATP Family. Molecular Characteristics, Substrates,
Their Role in Drug-Drug Interactions, and Functional Consequences of Polymorphisms. In: (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 1-28
MissingFormLabel
- 14
Nies A T, Keppler D.
The apical conjugate efflux pump ABCC2 (MRP2).
Pflügers Arch – Eur J Physiol.
2007;
453
643-659
MissingFormLabel
- 15
Arrese M, Trauner M.
Molecular aspects of bile formation and cholestasis.
Trends Mol Med.
2003;
9
558-564
MissingFormLabel
- 16
Oude Elferink R P, Paulusma C C, Groen A K.
Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases.
Gastroenterology.
2006;
130
908-925
MissingFormLabel
- 17
Pauli-Magnus C, Meier P J.
Hepatobiliary transporters and drug-induced cholestasis.
Hepatology.
2006;
44
778-787
MissingFormLabel
- 18
Paulusma C C, Bosma P J, Zaman G JR et al.
Congenital jaundice in rats with a mutation in a multidrug resistance associated-protein
gene.
Science.
1996;
271
1126-1127
MissingFormLabel
- 19
Büchler M, König J, Brom M et al.
cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein,
cMRP, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant
rats.
J Biol Chem.
1996;
271
15 091-15 098
MissingFormLabel
- 20
Jansen P LM, Peters W HM, Lamers W H.
Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective
hepatic anion transport.
Hepatology.
1985;
5
573-579
MissingFormLabel
- 21
Böhme M, Müller M, Leier I et al.
Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt
transport in rat liver.
Gastroenterology.
1994;
107
255-265
MissingFormLabel
- 22
Kubitz R, Keitel V, Häussinger D.
Inborn errors of biliary canalicular transport systems.
Methods Enzymol.
2005;
400
558-569
MissingFormLabel
- 23
Keitel V, Burdelski M, Warskulat U et al.
Expression and localization of hepatobiliary transport proteins in progressive familial
intrahepatic cholestasis.
Hepatology.
2005;
41
1160-1172
MissingFormLabel
- 24
Strautnieks S S, Byrne J A, Pawlikowska L et al.
Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families.
Gastroenterology.
2008;
134
1203-1214
MissingFormLabel
- 25
Keitel V, Burdelski M, Vojnisek Z et al.
De novo bile salt transporter antibodies as a possible cause of recurrent graft failure
after liver transplantation: a novel mechanism of cholestasis.
Hepatology.
2009;
50
510-517
MissingFormLabel
- 26
Jara P, Hierro L, Martinez-Fernandez P et al.
Recurrence of bile salt export pump deficiency after liver transplantation.
N Engl J Med.
2009;
361
1359-1367
MissingFormLabel
- 27
Oude Elferink R PJ, Ottenhoff R, Liefting W et al.
Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary
hyperbilirubinemia.
J Clin Invest.
1989;
84
476-483
MissingFormLabel
- 28
Proost J H, Nijssen H MJ, Strating C B et al.
Pharmacokinetic modeling of the sinusoidal efflux of anionic ligands from the isolated
perfused rat liver: the influence of albumin.
J Pharmacokinet Biopharm.
1993;
21
375-394
MissingFormLabel
- 29
König J, Rost D, Cui Y et al.
Characterization of the human multidrug resistance protein isoform MRP3 localized
to the basolateral hepatocyte membrane.
Hepatology.
1999;
29
1156-1163
MissingFormLabel
- 30
Rius M, Nies A T, Hummel-Eisenbeiss J et al.
Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the
basolateral hepatocyte membrane.
Hepatology.
2003;
38
374-384
MissingFormLabel
- 31 Keppler D, König J, Nies A T. Conjugate export pumps of the multidrug resistance protein (MRP) family in liver. In: Arias I M, Boyer J L, Chisari F V, (eds). The Liver: Biology and Pathobiology.. New York: Lippincott Williams & Wilkins; 2001: 373-382
MissingFormLabel
- 32
Akita H, Suzuki H, Hirohashi T et al.
Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with
rat MRP3.
Pharm Res.
2002;
19
34-41
MissingFormLabel
- 33
Lee Y M, Cui Y, König J et al.
Identification and functional characterization of the natural variant MRP3-Arg1297His
of human multidrug resistance protein 3 (MRP3 /ABCC3).
Pharmacogenetics.
2004;
14
213-223
MissingFormLabel
- 34
Rius M, Hummel-Eisenbeiss J, Hofmann A F et al.
Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and
reduced glutathione.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G640-G649
MissingFormLabel
- 35
Kruh G D, Belinsky M G.
The MRP family of drug efflux pumps.
Oncogene.
2003;
22
7537-7552
MissingFormLabel
- 36
Zelcer N, Reid G, Wielinga P et al.
Steroid and bile acid conjugates are substrates of human amultidrug-resistance protein
(MRP) 4 (ATP-binding cassette C 4).
Biochem J.
2003;
371
361-367
MissingFormLabel
- 37
Russel F G, Koenderink J B, Masereeuw R.
Multidrug resistance protein 4 (MRP4 /ABCC4):a versatile efflux transporter for drugs
and signalling molecules.
Trends Pharmacol Sci.
2008;
29
200-207
MissingFormLabel
- 38
Rius M, Hummel-Eisenbeiss J, Keppler D.
ATP-dependent transport of leukotrienes B 4 and C 4 by the multidrug resistance protein
ABCC4 (MRP4).
J Pharmacol Exp Ther.
2008;
324
86-94
MissingFormLabel
- 39
Mayer R, Kartenbeck J, Büchler M et al.
Expression of the MRP gene-encoded conjugate export pump in liver and its selective
absence from the canalicular membrane in transport-deficient mutant hepatocytes.
J Cell Biol.
1995;
131
137-150
MissingFormLabel
- 40 Keppler D, Kartenbeck J. The canalicular conjugate export pump encoded by the cmrp/cmoat gene. In: Boyer J L, Ockner R K, (eds). Progress in Liver Diseases.. Philadelphia: Saunders; 1996: 55-67
MissingFormLabel
- 41
Donner M G, Keppler D.
Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic
rat liver.
Hepatology.
2001;
34
351-359
MissingFormLabel
- 42
Soroka C J, Lee J M, Azzaroli F et al.
Cellular localization and up-regulation of multidrug resistance-associated protein
3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver.
Hepatology.
2001;
33
783-791
MissingFormLabel
- 43
Wagner M, Fickert P, Zollner G et al.
Role of farnesoid X receptor in determining hepatic ABC transporter expression and
liver injury in bile duct-ligated mice.
Gastroenterology.
2003;
125
825-838
MissingFormLabel
- 44
Jemnitz K, Veres Z, Vereczkey L.
Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in
rat in response to drugs inducing cholestasis in human.
Toxicol Sci.
2010;
115
80-88
MissingFormLabel
- 45
Wang R, Chen H L, Liu L et al.
Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export
pump.
Hepatology.
2009;
50
948-956
MissingFormLabel
- 46
Chai J, Luo D, Wu X et al.
Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive
cholestasis.
J Gastrointest Surg.
2011;
15
996-1004
MissingFormLabel
- 47
Fröhling W, Stiehl A.
Bile salt glucuronides: identification and quantitative analysis in the urine of patients
with cholestasis.
Eur J Clin Invest.
1976;
6
67-74
MissingFormLabel
- 48
Stiehl A, Raedsch R, Rudolph G et al.
Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile
acids in cirrhotic patients.
Hepatology.
1985;
5
492-495
MissingFormLabel
- 49
Takikawa H, Beppu T, Seyama Y.
Urinary concentrations of bile acid glucuronides and sulfates in hepatobiliary diseases.
Gastroenterol Jpn.
1984;
19
104-109
MissingFormLabel
- 50
Back P.
Bile acid glucuronides. Isolation and identification of a chenodeoxycholic acid glucuronide
from human plasma in intrahepatic cholestasis.
Hoppe Seylers Z Physiol Chem.
1976;
357
213-217
MissingFormLabel
- 51
Marschall H U, Wagner M, Zollner G et al.
Complementary stimulation of hepatobiliary transport and detoxification systems by
rifampicin and ursodeoxycholic acid in humans.
Gastroenterology.
2005;
129
476-485
MissingFormLabel
- 52 Keppler D, Rius M. The concept of basolateral efflux pumps of the hepatocyte. In: Keppler D, (eds). Bile Acids: Biological Actions and Clinical Relevance.. Dordrecht: Springer and Falk Foundation; 2007: 48-52
MissingFormLabel
- 53 Rius M, Nies, AT. et al .Bile salt and glutathione coefflux mediated by multidrug resistance protein MRP4 (ABCC4),
a basolateral transporter of the hepatocyte. In: Paumgartner G, (eds), Bile Acid Biology and its Therapeutic Implications;. Dordrecht: Springer; 2005: 101-106
MissingFormLabel
- 54
Ballatori N, Christian W V, Lee J Y et al.
OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal,
renal, and biliary epithelia.
Hepatology.
2005;
42
1270-1279
MissingFormLabel
- 55
Trauner M, Halilbasic E.
Nuclear receptors as new perspective for the management of liver diseases.
Gastroenterology.
2011;
140
1120-1125
MissingFormLabel
- 56
Pauli-Magnus C, Meier P J, Stieger B.
Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy.
Semin Liver Dis.
2010;
30
147-159
MissingFormLabel
- 57
Cui Y, König J, Leier I et al.
Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter
SLC21A6.
J Biol Chem.
2001;
276
9626-9630
MissingFormLabel
- 58
Cui Y, König J, Keppler D.
Vectorial transport by double-transfected cells expressing the human uptake transporter
SLC21A8 and the apical export pump ABCC2.
Mol Pharmacol.
2001;
60
934-943
MissingFormLabel
- 59
Martínez-Ansó E, Castillo J E, Díez J et al.
Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver.
Hepatology.
1994;
19
1400-1406
MissingFormLabel
- 60
Beuers U, Hohenester S, Buy Wenniger L J et al.
The biliary HCO3- umbrella: a unifying hypothesis on pathogenetic and therapeutic
aspects of fibrosing cholangiopathies.
Hepatology.
2010;
52
1489-1496
MissingFormLabel
- 61
Stefan de C, Jansen S, Bollen M.
NPP-type ectophosphodiesterases: unity in diversity.
Trends Biochem Sci.
2005;
30
542-550
MissingFormLabel
- 62
Kremer A E, Martens J JWW, Kulik W et al.
Lysophosphatidic acid is a potential mediator of cholestatic pruritus.
Gastroenterology.
2010;
139
1008-1018
MissingFormLabel
- 63
Watanabe N, Tsukada N, Smith C R et al.
Motility of bile canaliculi in the living animal: implications for bile flow.
J Cell Biol.
1991;
113
1069-1080
MissingFormLabel
Prof. Dr. Dietrich Keppler
German Cancer Research Center (DKFZ)
Im Neuenheimer Feld 280
69120 Heidelberg
Germany
eMail: d.keppler@dkfz-heidelberg.de