Abstract
Buchner and Curtius first reported the cyclopropanation of arenes
in 1885. Since the initial discovery, the Buchner reaction has been
the subject of significant research by both physical and synthetic
organic chemists. Described herein is a brief overview of the Buchner
reaction and related arene cyclopropanation processes, with an emphasis
on their application to natural product total synthesis.
Key words
Buchner - cyclopropanation - diazo - norcaradiene - cycloheptatriene - total synthesis
References and Notes
1a
Buchner E.
Curtius T.
Ber.
Dtsch. Chem. Ges.
1885,
2377
1b
Buchner E.
Ber.
Dtsch. Chem. Ges.
1896,
106
2
Doering WVE.
Laber G.
Vonderwahl R.
Chamberlain NF.
Williams RB.
J. Am. Chem. Soc.
1956,
78:
5448
Two other groups also proposed that
the Buchner reaction provides cycloheptatriene products; however,
Doering’s report ² was the first to
confirm this assignment by ¹ H NMR. See:
3a
DeJong AWK.
Recl. Trav. Chim.
1937,
198
3b
Grundmann C.
Ottmann G.
Justus Liebigs Ann. Chem
1953,
163
Reviews:
4a
Maier G.
Angew.
Chem., Int. Ed. Engl.
1967,
6:
402
4b
McNamara OA.
Maguire AR.
Tetrahedron
2011,
67:
9
5 First direct observation of bicyclo[4.1.0]hepta-2,4-diene:
5
Rubin MB.
J. Am. Chem.
Soc.
1981,
103:
7791
6
Wehner R.
Guenther H.
J. Am. Chem. Soc.
1975,
97:
923
7 For an early example see:
7
Ciganek E.
J. Am. Chem. Soc.
1967,
89:
1454
For early examples, see:
8a
Prinzbach H.
Fischer U.
Cruse R.
Angew.
Chem., Int. Ed. Engl.
1966,
5:
251
8b
Ganter C.
Roberts JD.
J. Am. Chem. Soc.
1966,
88:
741
9a
Vogel E.
Roth HD.
Wiedeman W.
Gunther H.
Eimer J.
Justus Liebigs Ann. Chem.
1972,
1
9b
Roth WR.
Klarner FG.
Siepert G.
Lennartz HW.
Chem.
Ber.
1992,
125:
217
10a
Pommer H.
Angew. Chem.
1950,
62:
281
10b
Bartels-Keith JR.
Johnson AW.
Taylor WI.
J. Chem. Soc.
1951,
2352
11a
Scott LT.
Chem. Commun.
1973,
22:
882
11b
Scott LT.
Minton MA.
Kirms MA.
J. Am. Chem. Soc.
1980,
102:
6311
12a
Anciaux AJ.
Demonceau A.
Hubert AJ.
Noels AF.
Petiniot N.
Teyssie P.
Chem. Commun.
1980,
16:
765
12b
Anciaux AJ.
Demonceau A.
Noels AF.
Hubert AJ.
Warin R.
Teyssie P.
J.
Org. Chem.
1981,
46:
873
Copper and rhodium are the most
commonly employed catalysts, however, silver and iron catalysts
have also been reported. Silver:
13a
Lovely CJ.
Browning RG.
Badarinarayana V.
Dias HVR.
Tetrahedron
Lett.
2005,
46:
2453
Iron:
13b
Mbuvi HM.
Woo LK.
J.
Porphyrins Phthalocyanines
2009,
13:
136
Reviews:
14a
Doyle MP.
McKervey MA.
Ye T.
Modern Catalytic Methods
for Organic Synthesis with Diazo Compounds
John
Wiley and Sons;
New York:
1998.
p.298
14b
Ye T.
Mckervey MA.
Chem. Rev.
1994,
94:
1091
14c
Merlic CA.
Zechman AL.
Synthesis
2003,
1137
14d
Foley DA.
Maguire AR.
Tetrahedron
2011,
67:
1131
15a
McKervey MA.
Tuladhar SM.
Twohig MF.
Chem. Commun.
1984,
2:
129
15b
Kennedy M.
McKervey MA.
Maguire AR.
Tuladhar SM.
Twohig MF.
J. Chem. Soc., Perkin Trans. 1
1990,
4:
1047
15c
Maguire AR.
O’Leary P.
Harrington F.
Lawrence SE.
Blake AJ.
J. Org. Chem.
2001,
66:
7166
16a
Pusino A.
Saba A.
Rosnati V.
Tetrahedron
1986,
42:
4319
16b
Doyle MP.
Shanklin MS.
Pho HQ.
Tetrahedron Lett.
1988,
29:
2639
16c
Moody CJ.
Miah S.
Slawin AMZ.
Mansfield DJ.
Richards IC.
J. Chem.
Soc., Perkin Trans. 1
1998,
24:
4067
17
Padwa A.
Austin DJ.
Price AT.
Semones MA.
Doyle MP.
Protopopova MN.
Winchester WR.
Tran A.
J.
Am. Chem. Soc.
1993,
115:
8669
18a
Wee AGH.
Liu B.
Zhang L.
J. Org. Chem.
1992,
57:
4404
18b
Padwa A.
Austin DJ.
Price AT.
Semones MA.
Doyle MP.
Protopopova MN.
Winchester WR.
Tran A.
J.
Am. Chem. Soc.
1993,
115:
8669
19
Kennedy M.
McKervey MA.
J. Chem. Soc., Perkin Trans.
1
1991,
10:
2565
20a
Frey B.
Wells AP.
Rogers DH.
Mander LN.
J. Am. Chem. Soc.
1998,
120:
1914
20b
Frey B.
Wells
AP.
Roden F.
Au TD.
Hockless DC.
Willis AC.
Mander LN.
Aust. J. Chem.
2000,
53:
819
21 Manderand colleagues subsequently
reported an alternative approach to the related natural product
harringtonolide:
21
Zhang H.
Appels DC.
Hockless DDR.
Mander LN.
Tetrahedron Lett.
1998,
39:
6577
22
Taber DF.
Ruckle RE.
J. Am. Chem. Soc.
1986,
108:
7686
23a
Rogers DH.
Morris JC.
Roden FS.
Frey B.
King GR.
Russkamp F.-W.
Bell RA.
Mander LN.
Pure Appl. Chem.
1996,
68:
515
23b
Morris JC.
Mander LN.
Hockless DCR.
Synthesis
1998,
455
24
King GR.
Mander LN.
Monck NJT.
Morris JC.
Zhang HB.
J. Am. Chem. Soc.
1997,
119:
3828
25
Aoyagi Y.
Yamazaki A.
Nakatsugawa C.
Fukaya H.
Takeya K.
Kawauchi S.
Izumi H.
Org.
Lett.
2008,
10:
4429
26
Levin S.
Nani RR.
Reisman SE.
Org. Lett.
2010,
12:
780
27 Cyclopentanones i and ii were determined to be the major byproducts
(Figure
[² ]
).
28 Substrates 35b and 35c were screened against an array of rhodium
and copper catalysts; Table
[¹ ]
,
entries 9 and 10 represent the best catalysts identified for the
formation of 36b and 36c ,
respectively.
29
Levin SL.
Nani RR.
Reisman SE.
J. Am. Chem. Soc.
2011,
133:
774
30a
Boeckman RK.
Flann CJ.
Poss KM.
J.
Am. Chem. Soc.
1985,
107:
4359
30b
Boeckman RK.
Shair MD.
Vargas JR.
Stolz LA.
J.
Org. Chem.
1993,
58:
1295
30c
Boeckman RK.
Reeder MR.
J.
Org. Chem.
1997,
62:
6456
30d
Boeckman RK.
Zhang J.
Reeder MR.
Org. Lett.
2002,
4:
3891
31 Ketoaldehyde iii (Figure
[³ ]
) is also formed in 36% yield; iii can be converted into 32 using
catalytic Rh(cod)Cl2 and diphenylphosphinopropane. See:
Phan D. H. T., Kim B., Dong V. M.; J. Am.
Chem. Soc.; 2009 , 131: 156
32a
Doyle MP.
Ene DG.
Forbes DC.
Pillow TH.
Chem. Commun.
1999,
17:
1691
32b
O’Keeffe S.
Harrington F.
Maguire AR.
Synlett
2007,
2367
32c
O’Neill S.
O’Keeffe S.
Harrington F.
Maguire AR.
Synlett
2009,
2312