Subscribe to RSS
DOI: 10.1055/s-0031-1289539
Enantioselective Access to 3-Methylene-1H-indanol through Asymmetric Domino Allylstannylation-Heck Reaction
Publication History
Publication Date:
19 October 2011 (online)
Abstract
By screening various chiral P,P-ligands in the palladium-catalyzed reaction of ortho-iodobenzaldehyde with allyl tributylstannane, a suitable ligand (Taniaphos) was identified that affords 3-methylene-1-indanol with an enantioselectivity of 96% ee. This result indicates that a ligated palladium intermediate is involved in the chirogenic step of the catalytic cycle (intramolecular electrophilic activation of the aldehyde function by ortho-palladation).
Key words
palladium - enantioselective catalysis - allyl-stannanes - intramolecular - Heck reaction - domino reactions - chiral P,P-ligands
-
1a
Handbook
of Organopalladium Chemistry for Organic Synthesis
Vols.
1 and 2:
Negishi E.de Meijere A. John Wiley; New York: 2002. -
1b
Tsuji J. Palladium Reagents and Catalysts John Wiley; Chichester: 1995. -
1c
Metal-Catalyzed
Cross-Coupling Reactions
2nd ed.:
Diederich F.Stang P. Wiley-VCH; Weinheim: 2004. - 2
Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules University Science Books; Sausalito: 1999. -
3a
Heck RF.Dieck HA. J. Am. Chem. Soc. 1974, 96: 1133 - for selected reviews, see:
-
3b
Heck RF. Org. React. 1982, 27: 345 -
3c
de Meijere A.Meyer FE. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 ; Angew. Chem. 1994, 106, 2473 -
3d
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
3e
Dounay AB.Overman LE. Chem. Rev. 2003, 103: 2945 -
4a
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 -
4b
Espinet P.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 4704 -
5a
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 ; Angew. Chem. 1993, 105, 137 -
5b
Tietze LF. Chem. Rev. 1996, 96: 115 -
5c
Domino
Reactions in Organic Synthesis
Tietze LF.Brasche G.Gericke K. Wiley-VCH; Weinheim: 2006. - For recent examples of domino processes involving palladium catalysis, see:
-
5d
Braun M.Richrath B. Synlett 2009, 968 -
5e
Rudolph A.Rackelmann N.Turcotte-Savard MO.Lautens M.
J. Org. Chem. 2009, 74: 289 -
5f
Tietze LF.Düfert A.Lotz F.Sölter L.Oum K.Lenzer T.Beck T.Herbst-Irmer R. J. Am. Chem. Soc. 2009, 131: 17879 -
5g
Leibeling M.Koester DC.Pawliczek M.Schild SC.Werz DB. Nature Chem. Biol. 2010, 6: 199 - 6
Agrawal YK.Bhatt HG.Raval HG.Oza PM.Gogoi PJ. Mini-Reviews in Medicinal Chemistry 2007, 7: 453 - 7
Cvengroš J.Schütte J.Schlörer N.Neudörfl J.-M.Schmalz H.-G. Angew. Chem. Int. Ed. 2009, 48: 6148 ; Angew. Chem. 2009, 121, 6264 -
8a
Denmark SE.Fu J. Chem. Rev. 2003, 103: 2763 -
8b
Marshall JA. Chem. Rev. 1996, 96: 31 - For a related formation of 3-methylene-1-indanols through intramolecular Heck reaction, see:
-
9a
Kündig EP.Ratni H.Crousse B.Bernardinelli G. J. Org. Chem. 2001, 66: 1852 -
9b
Fields WH.Khan AK.Sabat M.Chruma JJ. Org. Lett. 2008, 10: 5131 - For the palladium-catalyzed conversion of 4a into rac-9 using allene as a reagent, see:
-
9c
Gai X.Grigg R.Collard S.Muir JE. Chem. Commun. 2000, 1765 -
9d
Anwar U.Grigg R.Rasparini M.Savic V.Sridvaran V. Chem. Commun. 2000, 645 -
10a
While complexes of type 5 have been characterized, see, for instance Vicente et al.¹0b, we are aware that cationic intermediates resulting from dissociation of X- may be involved
-
10b
Vicente J.Abad JA.Martinez-Viviente E.Ramirez de Arellano MC. Organometallics 2000, 19: 752 -
11a
Marshall JA.Tang Y. Synlett 1992, 653 -
11b
Costa AL.Piazza MG.Tagliavini E.Trombini C.Umani-Ronchi A. J. Am. Chem. Soc. 1993, 115: 7001 -
11c
Keck GE.Tarbet KH.Geraci LS. J. Am. Chem. Soc. 1993, 115: 8467 -
11d
Bedford RB.Pilarski LT. Tetrahedron Lett. 2008, 49: 4216 - For reviews, see:
-
11e
Yanagisawa A. In Comprehensive Asymmetric CatalysisJacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 1999. Chap. 27. -
11f
Denmark SE.Fu J. Chem. Rev. 2003, 103: 2763 - We assume a cyclic transition state on the basis of a recent DFT study on the palladium-mediated allylstanylation of aldehydes, see:
-
12a
Piechaczyk O.Cantat T.Mezailles N.Le Floch P. J. Org. Chem. 2007, 72: 4228 - However, we cannot exclude an acyclic transition state as suggested for instance by Keck et al. See:
-
12b
Keck GE.Savin KA.Cressman ENK.Abbott DE. J. Org. Chem. 1994, 59: 7889 -
13a
Miyashita A.Yasuda A.Takaya H.Toriumi K.Ito T.Souchi T.Noyori R. J. Am. Chem. Soc. 1980, 102: 7932 -
13b For a review on modified
Binap ligands, see:
Berthod M.Mignani G.Woodward G.Lemaire M. Chem. Rev. 2005, 105: 1801 -
14a
Kranich R.Eis K.Geis O.Mühle S.Bats JW.Schmalz H.-G. Chem. Eur. J. 2000, 6: 2874 -
14b
Blume F.Zemolka S.Fey T.Kranich R.Schmalz H.-G. Adv. Synth. Catal. 2002, 344: 868 -
14c
Velder J.Robert T.Weidner I.Neudörfl J.-M.Lex J.Schmalz H.-G. Adv. Synth. Catal. 2008, 350: 1309 -
15a
Werle S.Fey T.Neudörfl J.-M.Schmalz H.-G. Org. Lett. 2007, 18: 3555 -
15b
Robert T.Velder J.Schmalz H.-G. Angew. Chem. Int. Ed. 2008, 47: 7718 ; Angew. Chem. 2008, 120, 7832 -
15c
Robert T.Abiri Z.Wassenaar J.Sandee AJ.Romanski S.Neudörfl J.-M.Schmalz H.-G.Reek JNH. Organometallics 2010, 29: 478 - 16 For a review of biaryl-type P,P-ligands,
see:
Shimizu H.Nagasaki I.Saito T. Tetrahedron 2005, 61: 5405 - 17
Togni A.Breutel C.Schnyder A.Spindler F.Landert H.Tijani A. J. Am. Chem. Soc. 1994, 116: 4062 -
18a
Ireland T.Großheimann G.Wieser-Jeunesse C.Knochel P. Angew. Chem. 1999, 111: 3397 -
18b For a review on ferreocene-based
ligands, see:
Gomez Array R.Adrio J.Carretero JC. Angew. Chem. Int. Ed. 2006, 45: 7674 ; Angew. Chem. 2006, 118, 7836 - For recent examples of the assignment of absolute configurations through TDDFT-calculated CD spectra, see:
-
20a
Hussain H.Krohn K.Flörke U.Schulz B.Draeger S.Pescitelli G.Antus S.Kurtán T. Eur. J. Org. Chem. 2007, 13: 292 -
20b
Krohn K.Zia-Ullah HH.Flörke U.Schulz B.Draeger S.Pescitelli G.Antus S.Kurtán T. Chirality 2007, 19: 464 -
20c
Di Bari L.Pescitelli G.Salvadori P.Rovini M.Anzini M.Cappelli A.Vomero S. Tetrahedron: Asymmetry 2006, 17: 3430 - 21
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision d.02 Gaussian, Inc.; Pittsburgh: 2003. -
22a
Becke AD. J. Chem. Phys. 1993, 98: 5648 -
22b
Becke AD. J. Chem. Phys. 1993, 98: 1372 -
22c
Stephens PJ.Devlin FJ.Chabalowski CF.Frisch MJ. J. Phys. Chem. 1994, 98: 11623 -
24a
Parac M.Grimme S. Chem. Phys. 2003, 292: 11 -
24b
Grimme S.Parac M. ChemPhysChem 2003, 292 -
24c
Jaffé HH.Orchin M. In Theory and applications of ultraviolet spectroscopy Wiley; New York: 1962. p.242 -
24d
Pescitelli G.Di Bari L.Caporusso AM.Salvadori P. Chirality 2008, 20: 393
References and Notes
All minima of 9 were optimized with DFT, B3LYP/6-31G(d) using Gaussian 03.²¹
23TZVP is a triple-ζ basis set with polarization functions
25Typical procedure: 2-Iodobenzaldehyde
(4a; 116 mg, 0.5 mmol), [Pd2dba3] (10.4 mg,
10 µmol, 2 mol%) and ligand L15 (Taniaphos, 15 µmol,
3 mol%) were dissolved in anhydrous DMF (5 mL)
under an argon atmosphere. Allyl tributylstannane (0.31 mL, 1.0 mmol,
2 equiv) was added and the resulting mixture was stirred at 80 ˚C
for 15 h. After cooling to r.t. sat. aq KF (15 mL) was added and
the mixture was extracted with methyl tert-butyl
ether (3 × 20 mL). The combined organic
layers were washed with brine (20 mL), dried over MgSO4 and
solvents were evaporated. The residue was purified by flash chromatography
(SiO2-KF, 9:1; eluting with cyclohexane-EtOAc,
4:1) to give 9 (38 mg, 52%) as
a white-yellowish solid. The enantiomeric purity was determined
as 96% ee by means of chiral HPLC (Machery-Nagel Nucleocel
Delta S; n-hex-i-PrOH,
99:1; 0.5 mL/min); R
f
= 0.38
(Cyhex-EtOAc, 3:1); mp 71-72 ˚C; [α]D
²0 -9.1
(c 1.03, CDCl3); ¹H NMR:
(300 MHz, CDCl3):
δ = 2.42
(d, ³
J = 7
Hz, 1 H, OH), 2.61 (tdd, 4
J = 2.5
Hz, ³
J = 4 Hz, ²
J = 17 Hz,
1 H, H2A), 3.14 (tdd, 4
J = 2 Hz, ³
J = 7 Hz, ²
J = 17 Hz,
1 H, H2B), 5.07 (t, 4
J = 2 Hz,
1 H, H8A), 5.20 (dt, ³
J = 7 Hz, ³
J = 4 Hz,
1 H, H1), 5.50 (t, 4
J = 2.5
Hz, 1 H, H8B), 7.26-7.34, 7.39-7.45,
7.46-7.53 (3 × m, 4 × 1 H,
H4, H5, H6, H7); ¹³C NMR (75
MHz, CDCl3): δ = 42.4 (t, C2), 73.2
(d, C1), 104.2 (t, C8), 120.5, 125.0, 128.6, 128.7 (4 × d, C4,
C5, C6, C7), 140.1 (s, C3), 146.3, 146.9 (2 × s,
C3a, C7a); IR (ATR): 3305 (br, m), 3233 (br,
m), 3060 (w), 2921 (w), 2733 (w), 1641 (m), 1471 (m), 1423 (m),
1333 (s), 1044 (s), 873 (s), 756 (s), 730 (s) cm-¹;
GC-MS (Optima 1 MS, 10 psi, 50→300 ˚C): t
R = 6.51 min; MS
(EI, 70 eV): m/z (%) = 146
(42)[M]+, 145 (26), 131 (52),
128 (52), 117 (24), 103 (13), 91 (12), 77 (18), 63 (26), 39 (100);
HRMS: m/z calcd for
C10H10O: 146.073; found: 146.073 (±0.002).