RSS-Feed abonnieren
DOI: 10.1055/s-0031-1289556
Rhodium(III)-Catalyzed Synthesis of Pyridines from α,β-Unsaturated Ketoximes and Internal Alkynes
Publikationsverlauf
Publikationsdatum:
25. Oktober 2011 (online)

Abstract
A method for the synthesis of highly substituted pyridines from α,β-unsaturated oximes and internal alkynes has been developed using [Cp*RhCl2]2-CsOPiv as the catalyst system. The present transformation is carried out by a redox-neutral sequence of vinylic C-H rhodation, alkyne insertion, and C-N bond formation of the putative vinyl rhodium intermediate with the oxime nitrogen, where the N-O bond of oxime derivatives could work as an internal oxidant to maintain the catalytic cycle.
Key words
pyridines - oximes - alkynes - rhodium - C-H activation
- Supporting Information for this article is available online:
- Supporting Information
- 1a
Progress in Heterocyclic Chemistry
Vol.
20:
Gribble GW.Joule JA. Elsevier; Oxford: 2008. and other volumes in this series - 1b
Comprehensive Heterocyclic Chemistry III
Katritzky AR.Ramsden CA.Scriven EFV.Taylor RJK. Pergamon; Oxford: 2008. - 1c
Comprehensive Heterocyclic Chemistry II
Katritzky AR.Rees CA.Scriven EFV.Taylor RJK. Pergamon; Oxford: 2008. - 1d
Comprehensive Heterocyclic Chemistry II
Katritzky AR.Rees CW.Scriven EFV.McKillop A. Pergamon; Oxford: 1996. and references therein - 1e
Eicher T.Hauptmann S. The Chemistry of Heterocycles Wiley-VCH; Weinheim: 2003. - For recent reviews on synthesis of pyridines, see:
- 2a
Hill MD. Chem. Eur. J. 2010, 16: 12052 - 2b
Bagley MC.Glover C.Merritt EA. Synlett 2007, 2459 - 2c
Heller B.Hapke M. Chem. Soc. Rev. 2007, 36: 1085 - 2d
Ciufolini MA.Chan BK. Heterocycles 2007, 74: 101 - 2e
Henry GD. Tetrahedron 2004, 60: 6043 - 2f
Varela JA.Saa C. Chem. Rev. 2003, 103: 3787 - For recent selected reports on synthesis of pyridines, see:
- 3a
Wang YF.Toh KK.Ng PJE.Chiba S. J. Am. Chem. Soc. 2011, 133: 6411 - 3b
Nakamura I.Zhang D.Terada M. J. Am. Chem. Soc. 2010, 132: 7884 - 3c
Chiba S.Xu Y.-J.Wang Y.-F. J. Am. Chem. Soc. 2009, 131: 12886 - 3d
Wang YF.Chiba S. J. Am. Chem. Soc. 2009, 131: 12570 - 3e
Manning JR.Davies HML. J. Am. Chem. Soc. 2008, 130: 8602 - 3f
Manning JR.Davies HML. J. Am. Chem. Soc. 2008, 130: 8602 - 3g
Liu S.Liebeskind LS. J. Am. Chem. Soc. 2008, 130: 6918 - 3h
Barluenga J.Fernández-Rodríguez MA.García-García P.Aguilar E. J. Am. Chem. Soc. 2008, 130: 2764 - 3i
Parthasarathy K.Jeganmohan M.Cheng C.-H. Org. Lett. 2008, 10: 325 - 3j
Movassaghi M.Hill MD.Ahmad OK. J. Am. Chem. Soc. 2007, 129: 10096 - 3k
Dash J.Lechel T.Reissig H.-U. Org. Lett. 2007, 9: 5541 - 3l
Trost BM.Gutierrez AC. Org. Lett. 2007, 9: 1473 - 3m
Yamamoto Y.Kinpara K.Ogawa R.Nishiyama H.Itoh K. Chem. Eur. J. 2006, 12: 5618 - 3n
Movassaghi M.Hill MD. J. Am. Chem. Soc. 2006, 128: 4592 - 3o
Tanaka R.Yuza A.Watai Y.Suzuki D.Takayama Y.Sato F.Urabe H. J. Am. Chem. Soc. 2005, 127: 7774 - 3p
McCormick MM.Duong HA.Zuo G.Louie J. J. Am. Chem. Soc. 2005, 127: 5030 - For recent reviews, see:
- 4a
Wencel-Delord J.Dröge T.Liu F.Glorius F. Chem. Soc. Rev. 2011, 40: 4740 - 4b
Ackermann L. Chem. Rev. 2011, 111: 1315 - 4c
Satoh T.Miura M. Chem. Eur. J. 2010, 16: 11212 - 4d
Colby DA.Bergman RG.Ellman JA. Chem. Rev. 2010, 110: 624 - 4e
Lyons TW.Sanford MS. Chem. Rev. 2010, 110: 1147 - 4f
Sun C.-L.Li B.-J.Shi Z.-J. Chem. Commun. 2010, 46: 677 - 4g
Ackermann L.Vicente R.Kapdi AR. Angew. Chem. Int. Ed. 2009, 48: 9792 - 4h
Chen X.Engle KM.Wang D.-H.Yu J.-Q. Angew. Chem. Int. Ed. 2009, 48: 5094 - 4i
Kulkarni AA.Daugulis O. Synthesis 2009, 4087 - 4j
Kakiuchi F.Kochi T. Synthesis 2008, 3013 - 4k
Park YJ.Park J.-W.Jun C.-H. Acc. Chem. Res. 2008, 41: 222 - 4l
Kakiuchi F.Chatani N. Adv. Synth. Catal. 2003, 345: 1077 - 4m
Ritleng V.Sirlin C.Pfeffer M. Chem. Rev. 2002, 102: 1731 - 4n
Kakiuchi F.Murai S. Acc. Chem. Res. 2002, 35: 826 - 4o
Dyker G. Angew. Chem. Int. Ed. 1999, 38: 1698 - For selected reports on the ortho-metallation and carbon-carbon bond-formation sequence of aldimine and ketimine derivatives, see:
- 5a
Gao K.Lee P.-S.Fujita T.Yoshikai N. J. Am. Chem. Soc. 2010, 132: 12249 - 5b
Yoshikai N.Matsumoto A.Norinder J.Nakamura E. Angew. Chem. Int. Ed. 2009, 48: 2925 - 5c
Kuninobu Y.Nishina Y.Matsuki T.Takai K. J. Am. Chem. Soc. 2008, 130: 14062 - 5d
Kuninobu Y.Kikuchi K.Tokunaga Y.Nishina Y.Takai K. Tetrahedron 2008, 64: 5974 - 5e
Kuninobu Y.Nishina Y.Nakagawa C.Takai K. J. Am. Chem. Soc. 2006, 128: 12376 - 5f
Kuninobu Y.Tokunaga Y.Kawata A.Takai K. J. Am. Chem. Soc. 2006, 128: 202 - 5g
Kuninobu Y.Kawata A.Takai K. J. Am. Chem. Soc. 2005, 127: 13498 - 5h
Thalji RK.Ahrendt KA.Bergman RG.Ellman JA. J. Org. Chem. 2005, 70: 6775 - 5i
Ueura K.Satoh T.Miura M. Org. Lett. 2005, 7: 2229 - 5j
Lim S.-G.Ahn J.-A.Jun C.-H. Org. Lett. 2004, 6: 4687 - 5k
Thalji RK.Ahrendt KA.Bergman RG.Ellman JA. J. Am. Chem. Soc. 2001, 123: 9692 - 5l
Jun C.-H.Hong J.-B.Kim Y.-H.Chung K.-Y. Angew. Chem. Int. Ed. 2000, 39: 3440 - 5m
Kakiuchi F.Sato T.Tsujimoto T.Yamauchi M.Chatani N.Murai S. Chem. Lett. 1998, 1053 - 5n
Fukuyama T.Chatani N.Kakiuchi F.Murai S. J. Org. Chem. 1997, 62: 5647 - 5o
Kakiuchi F.Yamauchi M.Chatani N.Murai S. Chem. Lett. 1996, 111 - 6 For a review, see:
Patureau FW.Glorius F. Angew. Chem. Int. Ed. 2011, 50: 1977 - For a report on rhodium(III)-catalyzed redox-neutral synthesis of azaheterocycles from benzhydroxamic acid derivatives and oxime derivatives with alkynes, see:
- 7a
Guimond N.Gorelsky SI.Fagnou K. J. Am. Chem. Soc. 2011, 133: 6449 - 7b
Rakshit S.Grohmann C.Besset T.Glorius F. J. Am. Chem. Soc. 2011, 133: 2350 - 7c
Too PC.Chua SH.Wong SH.Chiba S. J. Org. Chem. 2011, 76: 6159 - 7d
Hyster TK.Rovis T. Chem. Sci. 2011, 2: 1606 - 7e
Zhang X.Chen D.Zhao M.Zhao J.Jia A.Li X. Adv. Synth. Catal. 2011, 353: 719 - 7f
Too PC.Wang Y.-F.Chiba S. Org. Lett. 2010, 12: 5688 - 7g
Guimond N.Gouliaras C.Fagnou K. J. Am. Chem. Soc. 2010, 132: 6908 - For pioneering studies on the reactivity of Cp*Rh(OAc)n for directing-group-assisted C-H bond fission, see:
- 8a
Davies DL.Al-Duaij O.Fawcett J.Giardiello M.Hilton ST.Russell DR. Dalton Trans. 2003, 4132 - For investigation of the reactivity of the rhodacycles as well as reaction mechanism of the cyclometallation, see:
- 8b
Li L.Brennessel WW.Jones WD. Organometallics 2009, 28: 3492 - 8c
Han Y.-F.Li H.Hu P.Jin G.-X. Organometallics 2011, 30: 905 - For selected reports on rhodium(III)-catalyzed oxidative C-H bond functionalization-C-N bond formation with alkynes, see:
- 9a
Stuart DR.Alsabeh P.Kuhn M.Fagnou K. J. Am. Chem. Soc. 2010, 132: 18326 - 9b
Chen J.Song G.Pan C.-L.Li X. Org. Lett. 2010, 12: 5426 - 9c
Su Y.Zhao M.Han K.Song G.Li X. Org. Lett. 2010, 12: 5462 - 9d
Hyster TK.Rovis T. J. Am. Chem. Soc. 2010, 132: 10565 - 9e
Rakshit S.Patureau FW.Glorius F. J. Am. Chem. Soc. 2010, 132: 9585 - 9f
Morimoto K.Hirano K.Satoh T.Miura M. Org. Lett. 2010, 12: 2068 - 9g
Mochida S.Umeda N.Hirano K.Satoh T.Miura M. Chem. Lett. 2010, 39: 744 - 9h
Guimond N.Fagnou K. J. Am. Chem. Soc. 2009, 131: 12050 - 9i
Fukutani T.Umeda N.Hirano K.Satoh T.Miura M. Chem. Commun. 2009, 5141 - 9j
Stuart DR.Bertrand-Laperle M.Burgess KMN.Fagnou K. J. Am. Chem. Soc. 2008, 130: 16474 - For synthesis of pyridine derivatives by utilization of 6π-electrocyclization of azatrienes generated by ortho-vinylation, see:
- 10a
Parthasarathy K.Cheng C.-H. J. Org. Chem. 2009, 74: 9359 - 10b
Colby DA.Bergman RG.Ellman JA. J. Am. Chem. Soc. 2008, 130: 3645 - 10c
Yotphan S.Bergman RG.Ellman JA. J. Am. Chem. Soc. 2008, 130: 2452 - 10d
Parthasarathy K.Jeganmohan M.Cheng C.-H. Org. Lett. 2008, 10: 325 - 10e
Lim S.-G.Lee JH.Moon CW.Hong J.-B.Jun C.-H. Org. Lett. 2003, 5: 2759 - 11
Umeda N.Tsurugi H.Satoh T.Miura M. Angew. Chem. Int. Ed. 2008, 47: 4019 - 13 Although E/Z isomerization of the N-O bond
of oxime 1k might be possible in the present
reaction conditions, we are not certain whether the Z-isomer of 1k was
converted into pyridine via its isomerization to E-isomer
during this reaction. For isomerization of the oxime N-O
bonds, see:
Johnson JE.Silk NM.Nalley EA.Arfan M. J. Org. Chem. 1981, 46: 546
References and Notes
The formation of 4aa could result in generation of rhodium(I) species, which should be re-oxidized to rhodium(III) by air (O2) to maintain the catalytic turnover.
14
General Procedure
(Table 1, Entry 6)
To a MeOH solution (2.5 mL) of
(2E,3E)-4-phenylbut-3-
en-2-one
oxime (1a, 80.5 mg, 0.50 mmol) and diphenyl-acetylene
(2a, 106.9 mg, 0.60 mmol) were added [Cp*RhCl2]2 (7.7
mg, 0.0125 mmol) and CsOPiv (35.1 mg, 0.15 mmol), and the reaction
mixture was stirred at 60 ˚C under air for 7 h. After cooled
to r.t., the solvent was removed in vacuo, and the resulting crude
material was subjected to flash column chromatography (hexane-EtOAc = 90:10)
to afford 6-methyl-2,3,4-triphenylpyridine (3aa,
126.4 mg, 0.393 mmol) in 79% yield.