Synthesis 2011(23): 3784-3795  
DOI: 10.1055/s-0031-1289593
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

On the Dual Role of N-Heterocyclic Carbenes as Bases and Nucleophiles in Reactions with Organic Halides

Christiane E. I. Knappkea, Anthony J. Arduengo, IIIb, Haijun Jiaoc, Jörg-Martin Neudörfla, Axel Jacobi von Wangelin*a
a Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Koeln, Germany
Fax: +49(221)4705057; e-Mail: axel.jacobi@uni-koeln.de;
b Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487, USA
c Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
Further Information

Publication History

Received 11 August 2011
Publication Date:
07 November 2011 (online)

Abstract

The synthetic consequences of different basicities, nucleophilicities, and sterics of N-heterocyclic carbenes have been studied in reactions of imidazolin-2-ylidenes with organic halides. Highly nucleophilic and less basic carbenes cleanly gave alkyli­deneimidazolines, the deoxy analogues of Breslow-type intermediates. More basic NHCs engaged in unwanted deprotonation or dehydrohalogenation reactions.

    References

  • 1a Arduengo AJ. Harlow RL. Kline M. J. Am. Chem. Soc.  1991,  113:  361 
  • 1b Arduengo AJ. Krafczyk R. Chem. Unserer Zeit  1998,  32:  6 
  • For recent reviews, see:
  • 2a Bourissou D. Guerret O. Gabbaï FP. Bertrand G. Chem. Rev.  2000,  100:  39 
  • 2b Hermann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 ; Angew. Chem. 2002, 114, 1342
  • 2c Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  534 
  • 2d N-Heterocyclic Carbenes in Synthesis   Nolan SP. Wiley-VCH; Weinheim: 2006. 
  • 2e N-Heterocyclic Carbenes in Transition Metal Catalysis   Glorius F. Springer; Berlin: 2007. 
  • 2f Marion N. Díez-González S. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2988 ; Angew. Chem. 2007, 119, 3046
  • 2g Enders D. Niemeier O. Henseler A. Chem. Rev.  2007,  107:  5606 
  • 2h Nair V. Vellalath S. Babu BP. Chem. Soc. Rev.  2008,  37:  2691 
  • 2i Nair V. Menon RS. Biju AT. Sinu CR. Paul RR. Jose A. Sreekumar V. Chem. Soc. Rev.  2011,  40: DOI: 10.1039/c1cs15139h
  • 2j Chiang P.-C. Bode JW. In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, RSC Catalysis Series No. 6   Díez-González S. Royal Society of Chemistry; Cambridge: 2010.  p.399-435  
  • 2k

    Biju A. T., Kuhl N., Glorius F.; Acc. Chem. Res.; DOI: 10.1021/ar2000716.

  • 2l Hirano K. Piel I. Glorius F. Chem. Lett.  2011,  40:  786 
  • 2m Hahn FE. Jahnke MC. Angew. Chem. Int. Ed.  2008,  47:  3122 ; Angew. Chem. 2008, 120, 3166
  • 2n Díez-González S. Marion N. Nolan SP. Chem. Rev.  2009,  109:  3612 
  • 2o Moore JL. Rovis T. Top. Curr. Chem.  2010,  291:  77 
  • 3a Gusev DG. Organometallics  2009,  28:  6458 
  • 3b Dröge T. Glorius F. Angew. Chem. Int. Ed.  2010,  49:  6940 ; Angew. Chem. 2010, 122, 7094
  • Analogy to phosphines:
  • 3c Kühl O. Coord. Chem. Rev.  2005,  249:  693 
  • 3d Tolman CA. Chem. Rev.  1977,  77:  373 
  • 4a Magill AM. Cavell KJ. Yates BF. J. Am. Chem. Soc.  2004,  126:  8717 
  • 4b Chu Y. Deng H. Cheng J.-P.
    J. Org. Chem.  2007,  72:  7790 
  • 4c Amyes TL. Diver ST. Richard JP. Rivas FM. Toth K. J. Am. Chem. Soc.  2004,  126:  4366 
  • 4d Alder RW. Allen PR. Williams SJ. J. Chem. Soc., Chem. Commun.  1995,  1267 
  • 4e Kim Y.-J. Streitwieser A. J. Am. Chem. Soc.  2002,  124:  5757 
  • 4f Higgins EM. Sherwood JA. Lindsay AG. Armstrong J. Massey RS. Alder RW. O’Donoghue AC. Chem. Commun.  2011,  47:  1559 
  • 5 The studied triazolin-5-ylidene showed a similar nucleophilicity as DMAP and DBU, whereas the imidazolin-2-ylidene and imidazolidin-2-ylidene were 1000 times more nucleophilic: Maji B. Breugst M. Mayr H. Angew. Chem. Int. Ed.  2011,  50:  6915 ; Angew. Chem. 2011, 123, 7074
  • 6a Knappke CEI. Neudörfl JM. Jacobi von Wangelin A. Org. Biomol. Chem.  2010,  8:  1695 
  • 6b Knappke CEI. Untersuchungen zur Umpolung von Alkylhalogeniden durch N-heterocyclische Carbene. Dissertation, University of Cologne, Germany   Verlag Dr. Hut; München: 2011. 
  • 6c

    Knappke, C. E. I.; Jacobi von Wangelin, A. unpublished results. For precedences of deoxy-Breslow intermediates derived from α,β-unsaturated esters see:

  • 6d Fischer C. Smith SW. Powell DA. Fu GC. J. Am. Chem. Soc.  2006,  128:  1472 
  • 6e Matsuoka S.-i. Ota Y. Washio A. Katada A. Ichioka K. Takagi K. Suzuki M. Org. Lett.  2011,  13:  3722 
  • 6f Biju AT. Padmanaban M. Wurz NE. Glorius F. Angew. Chem. Int. Ed.  2011,  50:  8412 ; Angew. Chem. 2011, 123, 8562
  • 7a Breslow R. J. Am. Chem. Soc.  1958,  80:  3719 
  • 7b Breslow R. Kim R. Tetrahedron Lett.  1994,  35:  699 
  • 7c Chen Y.-T. Barletta GL. Haghjoo K. Cheng JT. Jordan F. J. Org. Chem.  1994,  59:  7714 
  • 7d Teles JH. Melder J.-P. Ebel K. Schneider R. Gehrer E. Harder W. Brode S. Enders D. Breuer K. Raabe G. Helv. Chim. Acta  1996,  79:  61 
  • 7e White MJ. Leeper FJ. J. Org. Chem.  2001,  66:  5124 
  • 7f Schrader W. Handayani PP. Burstein C. Glorius F. Chem. Commun.  2007,  716 
  • 7g Berkessel A. Elfert S. Etzenbach-Effers K. Teles JH. Angew. Chem. Int. Ed.  2010,  49:  7120 ; Angew. Chem. 2010, 122, 7275
  • Reaction of NHCs with alkyl halides:
  • 8a Begtrup M. Bull. Soc. Chim. Belg.  1988,  97:  573 
  • 8b

    Ref. 4d;

  • 8c Arduengo AJ. Davidson F. Dias HVR. Goerlich JR. Khasnis D. Marshall WJ. Prakasha TK. J. Am. Chem. Soc.  1997,  119:  12742 
  • 8d Arduengo AJ. Calabrese JC. Davidson F. Dias HVR. Goerlich JR. Krafczyk R. Marshall WJ. Tamm M. Schmutzler R. Helv. Chim. Acta  1999,  82:  2348 
  • 8e Rivas FM. Riaz U. Giessert A. Smulik JA. Diver ST. Org. Lett.  2001,  3:  2673 
  • 8f Kuhn N. Göhner M. Steimann M. Z. Naturforsch., B: Chem. Sci.  2002,  57:  631 
  • Ene-1,1-diamines:
  • 9a Huang Z.-T. Wang M.-X. In The Chemistry of Enamines   Rappoport Z. John Wiley & Sons; Chichester: 1994.  p.1303 
  • 9b Kantlehner W. In Science of Synthesis   Vol. 24:  de Meijere A. Thieme; Stuttgart: 2006.  p.571 
  • 9c Keller PA. Morgan J. In Science of Synthesis   Vol. 24:  de Meijere A. Thieme; Stuttgart: 2006.  p.707 
  • Ene-1,1-diamines with 2,3-dihydro-1H-imidazole structure:
  • 9d Gruseck U. Heuschmann M. Chem. Ber.  1987,  120:  2053 
  • 9e Kaufhold O. Hahn FE. Angew. Chem. Int. Ed.  2008,  47:  4057 ; Angew. Chem. 2008, 120, 4122
  • 9f Kuhn N. Bohnen H. Henkel G. Kreutzberg J. Z. Naturforsch., B: Chem. Sci.  1996,  51:  1267 
  • 9g Fürstner A. Alcarazo M. Goddard R. Lehmann CW. Angew. Chem. Int. Ed.  2008,  47:  3210 ; Angew. Chem. 2008, 120, 3254
  • 9h Bourson J. Bull. Soc. Chim. Fr.  1971,  152 
  • 9i Gruseck U. Heuschmann M. Tetrahedron Lett.  1987,  28:  2681 
  • 9j Gruseck U. Heuschmann M. Chem. Ber.  1987,  120:  2065 
  • 9k Hartmann K.-P. Heuschmann M. Angew. Chem. Int. Ed.  1989,  28:  1267 ; Angew. Chem. 1989, 101, 1288
  • 9l Hartmann K.-P. Heuschmann M. Tetrahedron  2000,  56:  4213 
  • 9m Ernd M. Heuschmann M. Zipse H. Helv. Chim. Acta  2005,  88:  1491 
  • 9n Ponti PP. Baldwin JC. Kaska WC. Inorg. Chem.  1979,  18:  873 
  • 9o Kuhn N. Bohnen H. Kreutzberg J. Bläser D. Boese R. J. Chem. Soc., Chem. Commun.  1993,  1136 
  • 9p Kuhn N. Bohnen H. Bläser D. Boese R. Chem. Ber.  1994,  127:  1405 
  • 9q Schumann H. Glanz M. Winterfeld J. Hemling H. Kuhn N. Bohnen H. Bläser D. Boese R. J. Organomet. Chem.  1995,  493:  C14-C18  
  • 9r Zhu Q. Liu M.-F. Wang B. Cheng Y. Org. Biomol. Chem.  2007,  5:  1282 
  • 9s Kunz D. Johnsen E. Monsler B. Rominger F. Chem. Eur. J.  2008,  14:  10909 
  • 10a Cariati F. Caruso U. Centore R. De Maria A. Fusco M. Panunzi B. Roviello A. Opt. Mater. (Amsterdam)  2004,  27:  91 
  • 10b Sollot GP. J. Org. Chem.  1982,  47:  2471 
  • 10c Hanna SB. Iskander Y. Riad Y. J. Chem. Soc.  1961,  217 
  • 13a Lin L. Li Y. Du W. Deng W.-P. Tetrahedron Lett.  2010,  51:  3571 
  • 13b Liu Y.-K. Li R. Yue L. Li B.-J. Chen Y.-C. Wu Y. Ding L.-S. Org. Lett.  2006,  8:  1521 
  • 14 Allen FH. Kennard O. Watson DG. Brammer L. Orpen AG. Taylor R. J. Chem. Soc., Perkin Trans. 2  1987,  S1-S19.  
  • A classical example of charge transfer-stabilized π,π-interaction is quinhydrone:
  • 16a Moser RE. Cassidy HG. J. Am. Chem. Soc.  1965,  87:  3463 
  • 16b Patil AO. Penington WT. Desiraju GR. Curtin DY. Paul IC. Mol. Cryst. Liq. Cryst.  1986,  134:  279 
  • 16c González Moa MJ. Mandado M. Mosquera RA. J. Phys. Chem. A  2007,  111:  1998 
  • 17a Einführung in die Photochemie   2nd rev. ed.:  Becker HGO. Thieme; Stuttgart: 1983.  p.126 
  • 17b Reichardt C. Solvents and Solvent Effects in Organic Chemistry   2nd rev. ed.:  VCH; Weinheim: 1988.  p.285ff 
  • 18 CRC Handbook of Chemistry and Physics   Weast RC. Astle MJ. CRC Press; Boca Raton: 1981.  p.E51-55  
  • 20a Arduengo AJ. Krafczyk R. Schmutzler R. Craig HA. Goerlich JR. Marshall WJ. Unverzagt M. Tetrahedron  1999,  55:  14523 
  • 20b Arduengo AJ. Goerlich JR. Krafczyk R. Marshall WJ. Angew. Chem. Int. Ed.  1998,  37:  1963 ; Angew. Chem. 1998, 110, 2062
  • 21 For pulse sequences, see: Bigler P. Kümmerle R. Bermel W. Magn. Reson. Chem.  2007,  45:  469 
  • 22 Sheldrick GM. Acta Crystallogr., Sect. A  2008,  64:  112 
  • Synthesis of this carbene and its precursor (imidazolium salt):
  • 23a

    Ref. 20a.

  • 23b Jafarpour L. Stevens ED. Nolan SP. J. Organomet. Chem.  2000,  606:  49 
  • 23c Hintermann L. Beilstein J. Org. Chem.  2007,  3:  22 
  • 25a Van Ausdall BR. Glass JL. Wiggins KM. Aarif AM. Louie J. J. Org. Chem.  2009,  74:  7935 
  • Based on:
  • 25b Fürstner A. Alcarazo M. César V. Lehmann CW. Chem. Commun.  2006,  2176 
  • 26 Synthesized according to: Flahaut A. Roland S. Mangeney P. J. Organomet. Chem.  2007,  692:  5754 
  • 27 Arduengo AJ. Bock H. Chen H. Denk M. Dixon DA. Green JC. Herrmann WA. Jones NL. Wagner M. West R. J. Am. Chem. Soc.  1994,  116:  6641 
11

See Supporting Information for further details on the reaction of 3k with n-BuLi.

12

Basicity determinations of NHCs have been performed by deprotonation of fluorene systems. See: refs. 4b,e.

15

Similar, but even more pronounced bond orders were reported for related 1,3-dimethylimidazolin-2-ylidene acetophenone. See ref. 9g.

19

All structures were optimized at the B3LYP/6-31G* density functional level of theory and the optimized structures were further characterized as energy minimum structures without imaginary frequencies at the same level by frequency calculations, which provide further zero-point energies and thermal correction to enthalpy and Gibbs free energy at 298 K. Thermal energy corrections at B3LYP/6-31G* from the frequency calculations have been added to the final Gibbs free energies for analyzing the substitution effects. Furthermore, we have also tested single-point energy calculations at the B3LYP/6-311+G* level on B3LYP/6-31G* optimized geometries. Since both B3LYP/6-311+G* and B3LYP/6-31G* gave approximately the same results for the exchange reactions, we used only the B3LYP/6-31G* Gibbs free energy for discussion and comparison. All calculations have been carried out by using the Gaussian 03 program package: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Rev. C.02, Gaussian, Inc., Wallingford CT, 2004.

24

Crystal structure data of compounds 4c and 6 are available under CCDC 837921 and 837922 from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.