Subscribe to RSS
DOI: 10.1055/s-0031-1289593
On the Dual Role of N-Heterocyclic Carbenes as Bases and Nucleophiles in Reactions with Organic Halides
Publication History
Publication Date:
07 November 2011 (online)
Abstract
The synthetic consequences of different basicities, nucleophilicities, and sterics of N-heterocyclic carbenes have been studied in reactions of imidazolin-2-ylidenes with organic halides. Highly nucleophilic and less basic carbenes cleanly gave alkylideneimidazolines, the deoxy analogues of Breslow-type intermediates. More basic NHCs engaged in unwanted deprotonation or dehydrohalogenation reactions.
Key words
N-heterocyclic carbenes - enamines - umpolung - imidazoles - nucleophilicity
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Arduengo AJ.Harlow RL.Kline M. J. Am. Chem. Soc. 1991, 113: 361 -
1b
Arduengo AJ.Krafczyk R. Chem. Unserer Zeit 1998, 32: 6 - For recent reviews, see:
-
2a
Bourissou D.Guerret O.Gabbaï FP.Bertrand G. Chem. Rev. 2000, 100: 39 -
2b
Hermann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 ; Angew. Chem. 2002, 114, 1342 -
2c
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 534 -
2d
N-Heterocyclic Carbenes
in Synthesis
Nolan SP. Wiley-VCH; Weinheim: 2006. -
2e
N-Heterocyclic
Carbenes in Transition Metal Catalysis
Glorius F. Springer; Berlin: 2007. -
2f
Marion N.Díez-González S.Nolan SP. Angew. Chem. Int. Ed. 2007, 46: 2988 ; Angew. Chem. 2007, 119, 3046 -
2g
Enders D.Niemeier O.Henseler A. Chem. Rev. 2007, 107: 5606 -
2h
Nair V.Vellalath S.Babu BP. Chem. Soc. Rev. 2008, 37: 2691 -
2i
Nair V.Menon RS.Biju AT.Sinu CR.Paul RR.Jose A.Sreekumar V. Chem. Soc. Rev. 2011, 40: DOI: 10.1039/c1cs15139h -
2j
Chiang P.-C.Bode JW. In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, RSC Catalysis Series No. 6Díez-González S. Royal Society of Chemistry; Cambridge: 2010. p.399-435 -
2k
Biju A. T., Kuhl N., Glorius F.; Acc. Chem. Res.; DOI: 10.1021/ar2000716.
-
2l
Hirano K.Piel I.Glorius F. Chem. Lett. 2011, 40: 786 -
2m
Hahn FE.Jahnke MC. Angew. Chem. Int. Ed. 2008, 47: 3122 ; Angew. Chem. 2008, 120, 3166 -
2n
Díez-González S.Marion N.Nolan SP. Chem. Rev. 2009, 109: 3612 -
2o
Moore JL.Rovis T. Top. Curr. Chem. 2010, 291: 77 -
3a
Gusev DG. Organometallics 2009, 28: 6458 -
3b
Dröge T.Glorius F. Angew. Chem. Int. Ed. 2010, 49: 6940 ; Angew. Chem. 2010, 122, 7094 - Analogy to phosphines:
-
3c
Kühl O. Coord. Chem. Rev. 2005, 249: 693 -
3d
Tolman CA. Chem. Rev. 1977, 77: 373 -
4a
Magill AM.Cavell KJ.Yates BF. J. Am. Chem. Soc. 2004, 126: 8717 -
4b
Chu Y.Deng H.Cheng J.-P.
J. Org. Chem. 2007, 72: 7790 -
4c
Amyes TL.Diver ST.Richard JP.Rivas FM.Toth K. J. Am. Chem. Soc. 2004, 126: 4366 -
4d
Alder RW.Allen PR.Williams SJ. J. Chem. Soc., Chem. Commun. 1995, 1267 -
4e
Kim Y.-J.Streitwieser A. J. Am. Chem. Soc. 2002, 124: 5757 -
4f
Higgins EM.Sherwood JA.Lindsay AG.Armstrong J.Massey RS.Alder RW.O’Donoghue AC. Chem. Commun. 2011, 47: 1559 - 5 The studied triazolin-5-ylidene showed
a similar nucleophilicity as DMAP and DBU, whereas the imidazolin-2-ylidene
and imidazolidin-2-ylidene were 1000 times more nucleophilic:
Maji B.Breugst M.Mayr H. Angew. Chem. Int. Ed. 2011, 50: 6915 ; Angew. Chem. 2011, 123, 7074 -
6a
Knappke CEI.Neudörfl JM.Jacobi von Wangelin A. Org. Biomol. Chem. 2010, 8: 1695 -
6b
Knappke CEI. Untersuchungen zur Umpolung von Alkylhalogeniden durch N-heterocyclische Carbene. Dissertation, University of Cologne, Germany Verlag Dr. Hut; München: 2011. -
6c
Knappke, C. E. I.; Jacobi von Wangelin, A. unpublished results. For precedences of deoxy-Breslow intermediates derived from α,β-unsaturated esters see:
-
6d
Fischer C.Smith SW.Powell DA.Fu GC. J. Am. Chem. Soc. 2006, 128: 1472 -
6e
Matsuoka S.-i.Ota Y.Washio A.Katada A.Ichioka K.Takagi K.Suzuki M. Org. Lett. 2011, 13: 3722 -
6f
Biju AT.Padmanaban M.Wurz NE.Glorius F. Angew. Chem. Int. Ed. 2011, 50: 8412 ; Angew. Chem. 2011, 123, 8562 -
7a
Breslow R. J. Am. Chem. Soc. 1958, 80: 3719 -
7b
Breslow R.Kim R. Tetrahedron Lett. 1994, 35: 699 -
7c
Chen Y.-T.Barletta GL.Haghjoo K.Cheng JT.Jordan F. J. Org. Chem. 1994, 59: 7714 -
7d
Teles JH.Melder J.-P.Ebel K.Schneider R.Gehrer E.Harder W.Brode S.Enders D.Breuer K.Raabe G. Helv. Chim. Acta 1996, 79: 61 -
7e
White MJ.Leeper FJ. J. Org. Chem. 2001, 66: 5124 -
7f
Schrader W.Handayani PP.Burstein C.Glorius F. Chem. Commun. 2007, 716 -
7g
Berkessel A.Elfert S.Etzenbach-Effers K.Teles JH. Angew. Chem. Int. Ed. 2010, 49: 7120 ; Angew. Chem. 2010, 122, 7275 - Reaction of NHCs with alkyl halides:
-
8a
Begtrup M. Bull. Soc. Chim. Belg. 1988, 97: 573 -
8b
Ref. 4d;
-
8c
Arduengo AJ.Davidson F.Dias HVR.Goerlich JR.Khasnis D.Marshall WJ.Prakasha TK. J. Am. Chem. Soc. 1997, 119: 12742 -
8d
Arduengo AJ.Calabrese JC.Davidson F.Dias HVR.Goerlich JR.Krafczyk R.Marshall WJ.Tamm M.Schmutzler R. Helv. Chim. Acta 1999, 82: 2348 -
8e
Rivas FM.Riaz U.Giessert A.Smulik JA.Diver ST. Org. Lett. 2001, 3: 2673 -
8f
Kuhn N.Göhner M.Steimann M. Z. Naturforsch., B: Chem. Sci. 2002, 57: 631 - Ene-1,1-diamines:
-
9a
Huang Z.-T.Wang M.-X. In The Chemistry of EnaminesRappoport Z. John Wiley & Sons; Chichester: 1994. p.1303 -
9b
Kantlehner W. In Science of Synthesis Vol. 24:de Meijere A. Thieme; Stuttgart: 2006. p.571 -
9c
Keller PA.Morgan J. In Science of Synthesis Vol. 24:de Meijere A. Thieme; Stuttgart: 2006. p.707 - Ene-1,1-diamines with 2,3-dihydro-1H-imidazole structure:
-
9d
Gruseck U.Heuschmann M. Chem. Ber. 1987, 120: 2053 -
9e
Kaufhold O.Hahn FE. Angew. Chem. Int. Ed. 2008, 47: 4057 ; Angew. Chem. 2008, 120, 4122 -
9f
Kuhn N.Bohnen H.Henkel G.Kreutzberg J. Z. Naturforsch., B: Chem. Sci. 1996, 51: 1267 -
9g
Fürstner A.Alcarazo M.Goddard R.Lehmann CW. Angew. Chem. Int. Ed. 2008, 47: 3210 ; Angew. Chem. 2008, 120, 3254 -
9h
Bourson J. Bull. Soc. Chim. Fr. 1971, 152 -
9i
Gruseck U.Heuschmann M. Tetrahedron Lett. 1987, 28: 2681 -
9j
Gruseck U.Heuschmann M. Chem. Ber. 1987, 120: 2065 -
9k
Hartmann K.-P.Heuschmann M. Angew. Chem. Int. Ed. 1989, 28: 1267 ; Angew. Chem. 1989, 101, 1288 -
9l
Hartmann K.-P.Heuschmann M. Tetrahedron 2000, 56: 4213 -
9m
Ernd M.Heuschmann M.Zipse H. Helv. Chim. Acta 2005, 88: 1491 -
9n
Ponti PP.Baldwin JC.Kaska WC. Inorg. Chem. 1979, 18: 873 -
9o
Kuhn N.Bohnen H.Kreutzberg J.Bläser D.Boese R. J. Chem. Soc., Chem. Commun. 1993, 1136 -
9p
Kuhn N.Bohnen H.Bläser D.Boese R. Chem. Ber. 1994, 127: 1405 -
9q
Schumann H.Glanz M.Winterfeld J.Hemling H.Kuhn N.Bohnen H.Bläser D.Boese R. J. Organomet. Chem. 1995, 493: C14-C18 -
9r
Zhu Q.Liu M.-F.Wang B.Cheng Y. Org. Biomol. Chem. 2007, 5: 1282 -
9s
Kunz D.Johnsen E.Monsler B.Rominger F. Chem. Eur. J. 2008, 14: 10909 -
10a
Cariati F.Caruso U.Centore R.De Maria A.Fusco M.Panunzi B.Roviello A. Opt. Mater. (Amsterdam) 2004, 27: 91 -
10b
Sollot GP. J. Org. Chem. 1982, 47: 2471 -
10c
Hanna SB.Iskander Y.Riad Y. J. Chem. Soc. 1961, 217 -
13a
Lin L.Li Y.Du W.Deng W.-P. Tetrahedron Lett. 2010, 51: 3571 -
13b
Liu Y.-K.Li R.Yue L.Li B.-J.Chen Y.-C.Wu Y.Ding L.-S. Org. Lett. 2006, 8: 1521 - 14
Allen FH.Kennard O.Watson DG.Brammer L.Orpen AG.Taylor R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19. - A classical example of charge transfer-stabilized π,π-interaction is quinhydrone:
-
16a
Moser RE.Cassidy HG. J. Am. Chem. Soc. 1965, 87: 3463 -
16b
Patil AO.Penington WT.Desiraju GR.Curtin DY.Paul IC. Mol. Cryst. Liq. Cryst. 1986, 134: 279 -
16c
González Moa MJ.Mandado M.Mosquera RA. J. Phys. Chem. A 2007, 111: 1998 -
17a
Einführung in die Photochemie
2nd
rev. ed.:
Becker HGO. Thieme; Stuttgart: 1983. p.126 -
17b
Reichardt C. Solvents and Solvent Effects in Organic Chemistry 2nd rev. ed.: VCH; Weinheim: 1988. p.285ff - 18
CRC
Handbook of Chemistry and Physics
Weast RC.Astle MJ. CRC Press; Boca Raton: 1981. p.E51-55 -
20a
Arduengo AJ.Krafczyk R.Schmutzler R.Craig HA.Goerlich JR.Marshall WJ.Unverzagt M. Tetrahedron 1999, 55: 14523 -
20b
Arduengo AJ.Goerlich JR.Krafczyk R.Marshall WJ. Angew. Chem. Int. Ed. 1998, 37: 1963 ; Angew. Chem. 1998, 110, 2062 - 21 For pulse sequences, see:
Bigler P.Kümmerle R.Bermel W. Magn. Reson. Chem. 2007, 45: 469 - 22
Sheldrick GM. Acta Crystallogr., Sect. A 2008, 64: 112 - Synthesis of this carbene and its precursor (imidazolium salt):
-
23a
Ref. 20a.
-
23b
Jafarpour L.Stevens ED.Nolan SP. J. Organomet. Chem. 2000, 606: 49 -
23c
Hintermann L. Beilstein J. Org. Chem. 2007, 3: 22 -
25a
Van Ausdall BR.Glass JL.Wiggins KM.Aarif AM.Louie J. J. Org. Chem. 2009, 74: 7935 - Based on:
-
25b
Fürstner A.Alcarazo M.César V.Lehmann CW. Chem. Commun. 2006, 2176 - 26 Synthesized according to:
Flahaut A.Roland S.Mangeney P. J. Organomet. Chem. 2007, 692: 5754 - 27
Arduengo AJ.Bock H.Chen H.Denk M.Dixon DA.Green JC.Herrmann WA.Jones NL.Wagner M.West R. J. Am. Chem. Soc. 1994, 116: 6641
References
See Supporting Information for further details on the reaction of 3k with n-BuLi.
12Basicity determinations of NHCs have been performed by deprotonation of fluorene systems. See: refs. 4b,e.
15Similar, but even more pronounced bond orders were reported for related 1,3-dimethylimidazolin-2-ylidene acetophenone. See ref. 9g.
19All structures were optimized at the B3LYP/6-31G* density functional level of theory and the optimized structures were further characterized as energy minimum structures without imaginary frequencies at the same level by frequency calculations, which provide further zero-point energies and thermal correction to enthalpy and Gibbs free energy at 298 K. Thermal energy corrections at B3LYP/6-31G* from the frequency calculations have been added to the final Gibbs free energies for analyzing the substitution effects. Furthermore, we have also tested single-point energy calculations at the B3LYP/6-311+G* level on B3LYP/6-31G* optimized geometries. Since both B3LYP/6-311+G* and B3LYP/6-31G* gave approximately the same results for the exchange reactions, we used only the B3LYP/6-31G* Gibbs free energy for discussion and comparison. All calculations have been carried out by using the Gaussian 03 program package: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Rev. C.02, Gaussian, Inc., Wallingford CT, 2004.
24Crystal structure data of compounds 4c and 6 are available under CCDC 837921 and 837922 from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.